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SUMMARY

Pre-stack elastic inversion requires a reliable wavelet model.
This wavelet model must take into account the angle depen-
dency of the wavelet, as well as the time dependency. This
is even more important for broadband data, as the wavelets
exhibit more variations, due to the fact that the maximum
frequency is very high for small time and angles, but much
smaller for large time and angle. We show how a continuously
varying wavelet model can be estimated through a Bayesian
inversion. This wavelet model can be used to pre-process the
gathers and provide a zero-phase wavelet model for pre-stack
elatic inversion. Synthetic and real data examples are shown
to support this.

INTRODUCTION

The angle-dependent reflectivity can be expressed by Shuey
equation (1985):

RP(t,θ) = A(t)+B(t)sin2
θ (1)

with:
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A is the intercept term and B the gradient term. We use the
two-term equation, but our approach can be generalized to the
three term Aki-Richards equation (1980).
In order to perform elastic inversion, we model the pre-stack
angle gathers D(t,θ) by a convolutional model (* denotes con-
volution in t):

D(t,θ) = W (t,θ)∗RP(t,θ)+N(t,θ) (3)

where W (t,θ) is the pre-stack wavelet model, N(t,θ) the noise.
In conventional narrowband data, the wavelet is weakly vary-
ing, as it is a Ricker-type wavelet with a dominant frequency
decreasing with time and angle. For broadband data, the wavelet
becomes strongly dependent on time and angle. This is be-
cause we attempt to push the maximum frequency fmax(t,θ)
of the wavelet as far as possible: this means fmax decrease
quite fast with time and angle, due to both the stretch effect
and the absorption.
There are two ways to estimate a pre-stack wavelet model. If
a well with density logs ρ , P-velocity logs Vp and S-velocity
logs Vs is available, RP can be computed for the well location
and the wavelet estimated by determistic matching between
Rp and D. However this requires that the well is exactly at the
position of the CIG, and that the checkshot allows a precise
mapping. The wavelet is valid only at the vicinity of the well.
Also, well are usually available on a small time window, which

make it difficult to estimate the low frequencies of the wavelet.
Even if the well is available on a large time window, it may be
necessary to use a small window for the computation in order
to ensure the stationarity of the wavelet.
If there are no wells, a zero-phase wavelet can be statistically
estimated for a given time window and a given partial angle
stack by assuming a white reflectivity. The problem here is
that the autocorrelation of the noise corrupts the wavelet esti-
mation and that no phase correction can be applied.
We consider both these methods as having limitations with
broadband data and proceed to describe an algorithm that can
estimate a wavelet model W (t,θ):
- having a continuous variation in t and θ

- having both an amplitude and a phase term
- not using local deterministic well information, but regional
statistical well information
This last feature points to using Bayesian inversion, as de-
scribed by Alemie and Sacchi (2011) who used Bayesian in-
version to estimate the AVO parameters for a given wavelet
model.

A STATISTICAL MODEL FOR INTERCEPT AND GRA-
DIENT BASED ON SOURCE SEPARATION

Intercept and Gradient have three known statistical features:
- there is an anti-correlation between A and B which is equiva-
lent to state that ”usually”, B and A are of opposite sign, so that
amplitude decreases with angle, while keeping the possibility
of the ”anomalic” case where A and B have the same sign and
amplitude increases versus angle.
- reflectivities do not have a white spectrum but rather a blue
spectrum and that they don’t have a Gaussian distribution, but
rather a ”long-tail” distribution.
Well data can be used to extract these statistical properties in
a quantitative way. From the ρ,VP,VS well logs, Awell ,Bwell
can be computed from equation (2). We then perform a non-
Gaussian source separation (Pham et al., 1992) on Awell ,Bwell .
A source separation problem is S = CE:

si(t) =
N∑

j=1

ci je j(t) (4)

where the N outputs si(t) are known, and the correlation ma-
trix C = ci j is unknown. In our case N = 2, s1(t) = A(t) and
s2(t) = B(t). For a blind separation problem, the e j(t) are also
unknown but are assumed to be independant with known prob-
ability density function (pdf) p(x). If the pdf is gaussian, then
only V = CTC can be recovered, and we can perform a singu-
lar value decomposition of the covariance to decompose into
principal components. If the pdf is non Gaussian, then the ma-
trix C can be estimated. The maximum likelihood estimation
of C can be done by estimating the separation matrix D = C−1

such as the separated components computed by F = DS are
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such as:
E[ fi(t)g[ f j(t)]] = δi j (5)

where E design the expectation and g(x) = − ∂

∂x log p(x). In
the case of a gaussian distribution, g(x) = x and we obtain that
the covariance of the separated components must be the iden-
tity matrix.
Using this algorithm on a real well, we obtain the following
separation matrix:
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Fig.1: Well intercept-gradient crossplot and separation matrix.

We see that we have captured the anti-correlation of intercept
and gradient.
We can after that whiten the separated components. We use a
common wavelet for the two separated components, the am-
plitude spectrum of which is shown on Figure 2.
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Fig. 2: Amplitude spectrum of the coloring wavelet.

We have at this point performed a convolutional source sepa-
ration:

si(t) =
N∑

j=1

ci j(t)∗ e j(t) (6)

The third item is the pdf of the whitened components. Again
we use a common pdf shown in Figure 3. This pdf is a scaled
logistic distribution, which has a tail in e−|x| but is a derivable

function:
p(x) =

1
(2cosh x

2 )2 (7)

We can see on Figure 3 that the logistic distribution (in red)
has a longer tail than the gaussian distribution (in black), thus
corresponding to a sparse input.
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Fig. 3: Probability density function of the whitened separated
components (red) and gaussian distribution (black).

BAYESIAN PRE-STACK WAVELET INVERSION

Once the statistical properties of the intercept and gradient
have been captured from well data, we can perform a Bayesian
inversion for estimating the wavelets. The unknown of this in-
version are:
- the whitened independent components e1(t) and e2(t)
- the wavelet parameters wi
From these unknowns, we compute:
- with equation (7) the intercept A(t) and gradient B(t)
- with Shuey equation (1) the angle dependent reflectivity R(t,θ)
- with the wi parameters the angle dependent wavelets W (t,θ)
- the modeled gather D(t,θ) by convolving the angle depen-
dent wavelets and reflectivities
The wavelet model is an autoregressive moving average (ARMA)
model with a separate phase-only term (all-pass) and amplitude-
only term. This wavelet model is parametrically varying in
time and angle. The Bayesian cost function is the sum of an a
priori term and a data misfit term:

C = λ
∑

t f [e1(t)]+ f [e2(t)]
+

∑
t,θ [D(t,θ)−D0(t,θ)]2 (8)

where:
- D0(t,θ) is the actual gather given by the processing sequence
- the hyper-parameter λ is the weight given to the a priori infor-
mation compared to the data misfit term. Its theoretical value
is twice the variance of the noise present in the data. In prac-
tice it can be chosen such as the two terms of the cost function
have comparable magnitude after minimization.
- the function f (x) is f (x) =− log p(x) where p(x) is the prob-
ability density function of e1(t) and e2(t). For a logistic distri-
bution f (x) = 2logcoshx/2 which behaves like |x| for large x.
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The first term in the cost function is the a priori term which is
a constraint for e1(t) and e2(t) to be white independent pro-
cesses with pdf p(x), which is equivalent to constrain the de-
sired statistical properties of the intercept and gradient (corre-
lation, spectrum, sparseness). The second term is a constraint
to match the data.

SYNTHETIC DATA EXAMPLE

We have produced a intercept and gradient by generated two
independent sources e1(t) and e2(t) following a logistic distri-
bution (this can be done easily because if y is a random variable
uniform over [0,1] then x = log y

1−y follows the logistic distri-
bution given by equation (7)). The two independent sources
have been mixed through the statistical model given by Figures
1 and 2, giving a intercept A(t) and a gradient B(t). Then an
angle dependent reflectivity R0(t,θ) was computed by equa-
tion (1) and is shown on Figure 5-b.
Figure 4-a shows an angle gather D0(t,θ) produced by mi-
grating with a wrong velocity the shot point produced by 1D
modeling with the R0(t,θ) model produced by the synthetic
well. Comparing the angle gather D0 with the reflectivity R0,
we see that the wavelet model must have a phase term to model
the residual moveout (RMO) due to the wrong velocity and an
amplitude term to model the stretch.
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Fig. 4: Migrated gather (a) and data modeling error (b).

We use this gather as an input to our Bayesian inversion. Fig-
ure 4-b shows the data modeling error D(t,θ)−D0(t,θ) and
Figure 5-a the derived R(t,θ) reflectivity gather together with
the R0(t,θ) produced by the well logs that was used to produce
the gather (Figure 5-b).
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Fig. 5: Estimated (a) and well (b) synthetic reflectivity.

Figure 6 shows the wavelets estimated by the proposed Bayesian
inversion as well as the wavelets estimated in non blind mode.
In non blind (or deterministic) mode, the reflectivity R(t,θ) is
constrainted to be the synthetic well reflectivity R0(t,θ).
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Fig. 6: Blind (a) and non-blind (b) wavelet model.

We can notice the similarity of the blind and non blind wavelet
models. The blind inversion is able to capture the amplitude,
phase, time and angle variation of the wavelet model.

REAL DATA EXAMPLE

Figure 7-a shows an angle gather from a variable-depth streamer
acquisition offshore North-West Australia and Figure 7-b the
gather after noise attenuation and RMO, with the zero-phase



Pre-stack wavelet estimation

part of the wavelet model shown by the red curves in incre-
ments of 5 degrees. The RMO consists in removing from the
data the phase-only part of the wavelet and the noise attenua-
tion consists in replacing the data D0(t,θ) by the reconstructed
data D(t,θ):
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Fig. 7: Angle-gather (a) after RMO and noise attenuation (b).

Figure 8-a shows the removed noise D0(t,θ)− D(t,θ) and
Figure 8-b shows the reflectivity R(t,θ):
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Fig. 8: Reconstruction noise (a) and reflectivity (b).

A pre-stack elastic inversion was performed with this dataset
and the estimated wavelets. The impedance and VP/VS sec-
tions are shown in Figure 9:

Fig. 9: IP (left) and VP/VS (right) section with proposed method

This can be compared with Figure 10, showing the Ip and
VP/VS sections obtained by using a deterministic angle-dependent
wavelet model obtained by matching the well to the gather at
the well location:

Fig. 10: IP (left) and VP/VS (right) section with the conven-
tional deterministic method

We see that the result with the proposed blind estimation wavelet
model compares well with a deterministic model.

CONCLUSION

We have described a Bayesian algorithm that can perform the
preprocessing before elastic inversion (noise attenuation and
residual move-out) as well as the angle-dependent zero-phase
wavelet estimation. This algorithm uses the statistical prop-
erties of the well instead of the well itself. We have shown
on a synthetic example that the statistical properties of the
well allows to estimate a wavelet model that is close to the
wavelet model obtained by deterministic matching. Using this
method allows to model the large time and angle variations of
the wavelet model of broadband data. As the statistical proper-
ties of the well are less localized than the well itself, the spatial
variability of the wavelet can also be taken into account.

ACKNOWLEDGEMENTS

I would like to thank my colleagues Feng Yang, Ronan Sablon
and Loic Michel for producing the well reflectivity, the angle
gathers and performing the elastic inversion.



Pre-stack wavelet estimation

REFERENCES

Alemie, W. and Sacchi, M., 2011, High-resolution three-term
AVO inversion by means of a Trivariate Cauchy probability
distribution: Geophysics, 76 n 3, R43-R55.
Aki, K., and Richards, P.G., 1980, Quantitative seismology:
Theory and methods: W.H. Freeman and Co.
Shuey, R. T., 1985, A simplification of the Zoeppritz equa-
tions: Geophysics, 50, 609-614.
Pham, D. T., Garat, P. and Jutten C., 1992, Separation of a
mixture of independent sources through a maximum likelihood
approach: Proceedings of EUSIPCO 92, 771-774.


