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Summary 
 

We demonstrate a recently developed method for computing tomography model uncertainties and mapping 

them into the migrated domain. After the final tomography, the method generates a series of equi‐probable 

velocity model  perturbations  within  a  standard  deviation  confidence  level.  This  allows  computing  standard 

deviation‐like attributes for velocity and anisotropy parameters and for key horizons. An application to West of 

Shetland dataset highlights the interest of the estimated uncertainties. 

Tomographic model uncertainties and their effect 
on imaged structures. 
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Introduction 

Seismic imaging is a common technique and a basis for well planning, reserve estimation and 
production optimization. The accuracy of seismic reflector positioning greatly depends on the 
migration “velocity” model (including anisotropy). The related uncertainties have only been 
investigated recently (Osypov et al., 2013) but they are crucial for reservoir risk analysis. Indeed, the 
migration velocity model directly affects lateral and vertical positioning of migrated structures. 

Messud et al. (2017; 2017b) have proposed a strategy aiming at assessing structural uncertainties 
associated with ray-based tomography. After the final tomography step, the method generates a series 
of equi-probable velocity model perturbations that are both tomographically-consistent and within a 
confidence level defined by standard deviation. In a second step, standard deviation-like attributes are 
computed for key horizons before being combined with well information in order to carry out 
reservoir risk analysis or other studies. 

The method is applied to a West of Shetland marine dataset recently reprocessed (Toubiana et al., 
2017). We first briefly describe the applied tomography-based velocity model building workflow. The 
results of the uncertainty analysis presented here relate to velocity, ε parameters (that are jointly 
estimated) and migrated key horizons. 

Pre-uncertainty analysis tomography workflow 

The dataset consists of two merged marine acquisitions from the 90’s, and reprocessed in 2016 using 
the latest broadband processing technology. A two-pass depth velocity model building workflow 
involving Tilted Transverse Isotropic (TTI) nonlinear slope tomography (Guillaume et al., 2013) has 
been applied. Each pass includes a pre-stack migration, a dense volumetric Residual Move-Out 
(RMO) picking on computed common image gathers (CIGs) and a nonlinear depth tomography. The 
TTI symmetry axis follows the layering. In the first tomography pass, Vp (velocity along TTI axis) is 
updated by inverting RMO information picked from pre-stack time migration CIGs (Lambaré et al., 
2007). A global well calibration is then performed using available well markers to mainly re-balance 
Vp and  model parameters for each layer. In the second multi-layer tomography pass, Vp and ε are 
simultaneously updated (preserving well-ties) to produce a maximum likelihood TTI velocity model 
that best minimizes RMO. The right-hand part of Figure 1 illustrates the decrease of tomography cost 
function after each pass of nonlinear tomography. 

From ray-based tomography to velocity uncertainty analysis 

Uncertainties relating to velocity model parameters can be evaluated by developing a probability 
density function (PDF) around the model obtained by final tomography which is assumed to be 
maximum likelihood model. The method proposed by Messud et al. (2017b) assumes the PDF has a 
Gaussian distribution in a sufficiently large interval. Starting with the tomographic system, the 
developed method computes equi-probable velocity model perturbations that are within a 68.3% (or 
standard deviation) confidence level. Uncertainty attributes can then be computed statistically using 
the obtained perturbations, involving map (or zero-offset kinematic) migrations in perturbed models. 

The tomography “cost function” values shown in Figure 1 are computed from the “data term”:  root 
mean square of the RMO weighted by a quality factor (the “constraints (or regularization) term” being 
most often small at the maximum likelihood by construction of our inversion scheme). Within the 
frame of non-linear slope tomography the cost functions related to the perturbations can be estimated 
automatically and non-linearly (Messud et al., 2017b). Figure 1 displays the cost function values 
obtained for the 46 first equi-probable velocity perturbations (out of 500). We observe that the cost 
function values computed for all perturbed models are almost identical, thus confirming that the PDF 
was sampled along an almost equi-probable contour, giving almost equi-probable velocity models. 
This allows the geophysicist to check the pertinence of the method. 

Model perturbations are applied simultaneously to Vp and ε parameters and they are computed for all 
estimated velocity grid parameters. The final tomography TTI model is shown in Figures 2a and 2b. 
The model perturbations generated by the algorithm depend on the grid mesh sizes on which the 
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parameters are estimated: Vp grid mesh was chosen 2 to 4 times smaller than ε grid mesh. The first 
computed model perturbations are shown in Figure 2c for Vp and Figure 2d for ε. 

Figure 1: Left: Tomography cost function values for final TTI model (i.e. maximum likelihood model) 
and the 46 first generated perturbed models among 500. Right: Cost function values after each 
velocity model building phase, represented with a larger nonlinear scale.

Figure 2: a) Final Vp model; b) Final ε model; c) First Vp perturbation among 500; d) First ε 
perturbation among 500; e) Vp standard deviation σV computed from 500 Vp perturbations; f) ε 
standard deviation σε computed from 500 ε perturbations. 

Error bars on Vp and ε model parameters can be computed considering the maximum possible 
variations of the perturbations (Messud et al., 2017b). Since the perturbations are related to a standard 
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deviation confidence level, the error bars are referred to as “standard deviation-like attribute”, here 
represented by σ. The Vp standard deviation σV increases with depth and lateral changes show much 
longer spatial wavelengths (Figure 2e) than the ε standard deviation σε (Figure 2f). 

Tomographic model uncertainties can also be mapped into the migrated domain. For this purpose, 
target horizons are zero-offset re-migrated in each perturbed model where both Vp and ε are 
simultaneously perturbed. A standard-deviation-like attribute on the depth position of each horizon is 
thus derived (Messud et al., 2017; Messud et al., 2017b). 

Figure 3: Base Flett horizon. a) Illumination map overlaying seismic depth slice at 1700m; b) Depth 
attribute in 3D view; c) Depth standard deviation attribute σZ in meters, in map and 3D views. 

Figure 4: a) Horizon depth standard deviation map with 4 well locations (green dots); b) 3D zoom-in 
around one well with Base Flett marker (cyan) and migrated seismic overlaid with Vp standard 
deviation σV in the background; c) Seismic imaged section, Base Flett marker (cyan), Base Flett 
horizon (pink dotted line) and envelope of horizon depth positions defined by bounding pink horizon 
lines. 

The geological horizon Base Flett around 2000m depth (Figure 3), chosen for its structural 
complexity, illustrates the estimate of uncertainty on horizon depth position. Horizon depth standard 
deviation increases with depth and structural dips (Figure 3c). Figures 3a and 3c show that the 
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uncertainty hierarchy is nicely correlated with variations in illumination. Areas with weaker 
illumination in blue on Figure 3a, corresponding to changes of mixed acquisition surveys and to depth 
variations of seabed, correlate with higher uncertainty areas in red on Figure 3c. 

An uncertainty analysis limited to Vp perturbations produces similar standard deviations of the 
horizon depth, indicating that uncertainties are mostly driven by Vp errors.  

The uncertainty analysis results can be matched with well data (Figure 4). The four wells shown in 
Figure 4a are located in areas with different hierarchies of horizon depth uncertainty. A closer look at 
the well in Figure 4b shows that horizon depth uncertainties have high lateral variability but nicely 
follow the Vp standard deviation σV. These uncertainties are also correlated to fault offsets clearly 
visible on the seismic. Figure 4c shows that the Base Flett marker (in cyan color) does not perfectly 
match the imaged seismic event identified by the pink dotted line (centre of the black trough). Instead, 
it lies within the computed error bars represented by the horizon depth “envelope” in purple color: the 
observed residual mis-ties are explained by the fact that the final model tries to honour both the 
picked RMO field and the layer-based well calibration constraints. Interestingly, the horizon error 
bars (or depth “envelope”) tend to wrap around the Base Flett seismic wavelet. 

Conclusions 

We showed a method for computing tomography uncertainties and mapping them into the migrated 
domain. For that purpose, equi-probable Vp and ε model perturbations are generated. It provides a 
smart method for sampling the PDF, assuming Gaussian shape. Nonlinear tomography makes it 
possible to efficiently compute the cost function in each perturbed model, thus allowing the 
geophysicist to check the equi-probability of computed model perturbations and thus the pertinence of 
the method. The application to real data highlights the three dimensional variability of the estimated 
uncertainties. The horizon standard deviation resulting from simultaneous Vp and ε perturbations is 
calculated and compared to both well marker information and seismic wavelet to provide control 
points. As the error bars tend to wrap around the seismic event wavelet, the logical next step would be 
to use them to guide the image well calibration away from wells. This methodology can be applied in 
the context of well prognosis so that geologists and drillers can better quantify uncertainties around 
the depth of reservoir targets. 
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