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Abstract

Towed-streamer marine broadband data have been key contributors to recent petroleum exploration history,
in new frontiers and in mature basins around the world. They have improved the characterization of reservoirs
by reducing the uncertainty in structural and stratigraphic interpretation and by providing more quantitative
estimates of reservoir properties. Dedicated acquisition, processing, and quality control (QC) methods have
been developed to capitalize on the broad bandwidth of the data and allow their rapid integration into reservoir
models. Using a variable-depth steamer data set acquired in the Campos Basin, Brazil, we determine that par-
ticular care that should be taken when processing and inverting broadband data to realize their full potential for
reservoir interpretation and uncertainty management in the reservoir model. In particular, we determine the QC
implemented and interpretative processing approach used to monitor data improvements during processing and
preconditioning for elastic inversion. In addition, we evaluate the importance of properly modeling the low
frequencies during wavelet estimation. We find the benefits of carefully processed broadband data for structural
interpretation and describe the application of acoustic and elastic inversions cascaded with Bayesian lithofacies
classification, to provide clear interpretative products with which we were able to demonstrate a reduction in
the uncertainty of the prediction and characterization of Santonian oil sandstones in the Campos Basin.

Introduction
The Campos Basin is located offshore Southeast Bra-

zil and covers 115;000 km2 along the northern coast of
Rio de Janeiro state and the southern coast of Espirito
Santo state. The Campos Basin is historically the most
prolific Brazilian basin, accounting for 74% of Brazilian
oil and 32% of national gas production in 2015 (Bastos,
2015). Exploration in the Campos Basin started in the
late 1950s, and shallow-water oilfields were discovered
in the 1970s. Deepwater fields, with turbidite reservoirs
at various chronostratigraphic levels, were discovered in
the 1980s and 1990s, and we are now in a phase of ultra-
deepwater discoveries. The Xelerete concession, located
250 km off the coast of the Rio de Janeiro State, is one
such discovery. The field, containing heavy oil, was dis-
covered in 2001 in a water depth of 2400 m. Although a
presalt prospect was later identified below the main clas-
tic target, this paper focuses on the first postsalt discov-
ery that was declared commercial in 2007 with, at the
time, an estimated in-place volume of 1.4 billion boe
(source: Petrobras press release, 09/10/2007).

Post-salt sandstones in the Campos Basin are char-
acterized by complex depositional systems, showing
high degrees of reworking and redistribution (Mutti
and Carminatti, 2012) as shown in the schematic cross
section in Figure 1. These systems are seismically

highly anisotropic and heterogeneous, with sharply
varying thicknesses and some volcanic intrusions.
The geologic setting of the Campos Basin makes it chal-
lenging for seismic imaging, reservoir characterization,
facies identification, and ultimately reservoir uncer-
tainty management. Nevertheless, post- and presalt
discoveries in the deepwater part of the basin have sus-
tained the continuous demand for seismic exploration
in the area.

In response to those challenges, CGG acquired a
broadband multiclient seismic survey in the Campos
Basin in 2014, covering an area of approximately
10,000 km2. Being rich in low- and high-frequency con-
tents, broadband data can image deeper targets, im-
prove vertical resolution, and ultimately reduce the
uncertainty in reservoir characterization. The benefits
of such an acquisition configuration have been demon-
strated in previous seismic imaging (Soubaras and
Whiting, 2011; Masclet et al., 2015a) and seismic veloc-
ity model building work (Masclet et al., 2015b). The im-
provement in reservoir characterization conditioned by
the wider frequency bandwidth of broadband seismic
data has also been shown in previous case studies (La-
fet et al., 2012; Reiser et al., 2012; Soubaras et al., 2012;
Wallick and Giroldi, 2013; Kneller et al., 2013; and Mi-
chel and Sablon, 2016).
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As for any type of seismic data, a fundamental prin-
ciple remains true for broadband data: Reservoir char-
acterization will only fully benefit from the seismic data
if it is properly processed and imaged. This is achieved
through new methods and algorithms that are better
suited to the wider bandwidth, and, in particular, the
low-frequency content of the data (Mesdag and Scha-
kel, 2015; Soubaras, 2016) as well as the judicious
choice of processing parameters coupled with quality
control (QC) that makes it possible to assess signal
preservation versus noise attenuation (Coleou et al.,
2013). In this work, we propose to revisit some of the
main steps in the seismic signal treatment and seismic
inversion of broadband seismic data, using the Campos
Basin variable-depth streamer seismic data set. The

objective is to propose the best practices to help the
interpreters to reduce the risk in oil exploration when
broadband seismic data are used. The resulting study
showcases the benefits that broadband data can bring
to reservoir uncertainty management — in this case, at
the exploration stage.

Case study overview
Following the high interest in seismic exploration in

the Campos Basin, a variable-depth streamer acquisi-
tion with 12 streamers, each 8100 m long, was acquired
by CGG in 2014. The cable depth varied from 10 m at the
near offset to 50 m at the farthest offset, and the source
depth was 6 m.

The data processing sequence consisted of swell and
linear noise removal, suppression of seismic interfer-
ence, debubbling using the far-field source signature
modeled from the recorded near-field hydrophone,
ghost wavefield elimination (Hu et al., 2014), water
column static correction to compensate for water tem-
perature variations, 3D surface-related multiple attenu-
ation, and regularization onto a 25 × 25 m grid. A
prestack Kirchhoff depth-migration algorithm was used
to perform the imaging after a geologically consistent
velocity model had been built through a multilayer hori-
zon-constrained tomography (Masclet et al., 2015b).
At the target level, the amplitude spectrum of the final
data calculated in a 1300 ms vertical window show the
−6 dB bandwidth ranging from 4 to 68 Hz — see
Figure 2.

An area of 100 km2 encompassing three exploration
wells drilled through postsalt clastic sediments of San-
tonian age was chosen for the present work.

A preliminary feasibility study based
on rock-physics analysis was performed
on the available well data in the area to
determine if the elastic properties ex-
pected from seismic inversion would
be able to effectively discriminate be-
tween the target lithology classes (based
on a rock-physics petroelastic model).
Three wells, A, B, and C, have compres-
sional sonic and density logs available in
the reservoir interval, and only well A
has shear sonic log data. The target in-
tervals of this study are the Santonian
oil-bearing sandstones. The geophysical
problem being solved here is the estima-
tion of probability of their occurrence in
the test area. Three types of lithofacies
have been defined at the wells: shale,
water sandstones, and oil sandstones.
Figure 3 shows the acoustic impedance
logs from the three wells, with the high-
lighted pay zones clearly showing lower
impedance values. However, a statisti-
cal analysis of the lithofacies types (Fig-
ure 4) shows significant overlap among
the rock types and impedance values

Figure 1. Schematic geological section of the Campos Basin
(Marcos Andre Alves, Brazil Round 9, 2007). The interval of
interest of this study is postsalt turbidities.

Figure 2. (a) Full-stack section through three wells C, A, and B and (b) ampli-
tude spectrum calculated in a 1300 ms window centered on reservoir level.
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change significantly between wells. We
propose explaining this overlap by the
presence of a depth trend. Without
removing this trend, we cannot apply
cutoff impedance values to directly sep-
arate the oil-saturated sand from the
other two zones. We therefore “detrend”
the acoustic and elastic property values
by subtracting the compaction trend, de-
fined as a linear function of depth, from
the log property values. This operation
allows for more effective separation of
the pay zone in the detrended acoustic
impedance values (Figure 5) which, in
turn, allows the acoustic inversion to
separate the oil sands more effectively.
Further analysis of the elastic properties
in well A, where the S-wave velocity and
other elastic properties are available,
shows that the use of detrended lambda-
rho and mu-rho elastic properties (Good-
way, 2001) improves the separation of
the pay zone interval from other facies
(Figure 6).

The preceding well-log analysis
showed that an elastic inversion of the
seismic data for detrended lambda-rho
and mu-rho will optimally characterize
the oil-bearing sandstones and hence re-
duce the uncertainty of the pay zone
localization. With the seismic field data
as our main input, the broad outline of
our reservoir characterization workflow
is as follows:

• seismic data preconditioning
• horizon and fault interpretation
• spectral analysis and wavelet esti-

mation
• optimization of the initial inver-

sion model and parameters
• lithofacies definition and classifi-

cation.

Each of the steps will be reviewed in
detail in the next sections, focusing on
the specific considerations for broad-
band data.

Seismic preconditioning and
inversion workflow
Seismic data preconditioning

Although the main processing se-
quence is usually optimized to best ad-
dress imaging-related issues, greater
focus is placed on delivering final data
that are ready to be input into quantita-
tive analysis and reservoir characteriza-
tion workflows — such as amplitude

Figure 3. Acoustic impedance log in wells A, B, and C with pay zones high-
lighted by low values of water saturation.

Figure 4. Histograms of acoustic impedance values color coded by rock type
(shale, water-saturated sandstone, and oil-saturated sandstone) in wells A, B,
and C. Impedance values for the same lithology change significantly between
wells.

Figure 5. Rock-physics plot, wells A, B, and C — combined histogram of
acoustic impedance values colored by rock type from three wells. Left: Before
detrending, there is significant overlap of the rock types in terms of acoustic
impedance values. Right: After detrending, it is possible to isolate some
of the oil sand rock type using a detrended acoustic impedance cutoff
(−8.5eþ 06 kg∕m3 �m∕s suggested here).
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variation with offset (AVO) studies, direct hydrocarbon
indicator (DHI) generation, or acoustic and elastic in-
versions. Depending on the final reservoir management
objectives, additional enhancement steps can be under-
taken to optimize the data. It is also worth stressing
that, just as the processes applied are important, appro-
priate QCs should be put in place during data acquisi-
tion, processing, and preconditioning. Definition of the
most relevant attributes, horizons over which they are
analyzed, and statistics to be checked is preferably tail-
ored as a function of the project’s final objectives (Ara-
man and Paternoster, 2014). By iterating the analysis of
these attributes, it is possible to quantitatively monitor
the improvement in the seismic data with respect to the
final aim. Particular attention should be paid to the fol-
lowing points:

• wavelet stationarity — vertical and lateral varia-
tions in signal frequency, phase, and amplitudes

• levels of coherent and random noise and lateral
consistency in the signal

• prestack signal variability in terms of frequency
content, phase, and AVO

• calibration of the seismic data with other mea-
sured “hard” data such as well logs.

In the case of the present study, the geophysical
problem being addressed is to best characterize the
oil-bearing sandstone by inverting partial angle stacks
for elastic properties. We therefore decided to combine
two QC approaches:

• Local QC where well log data are available: Seis-
mic rock-physics modeling help to assess if the
data are locally calibrated and representative of
the existing reservoir property knowledge. This
ensures that rock properties can be retrieved
from seismic amplitudes. We include the follow-
ing in those steps: the well-to-seismic tie, AVO
curve comparisons between seismic and syn-
thetic, local deterministic wavelet analysis, and
mini inversions in the well vicinity.

• Global QC via statistical parameters, calculated at
the survey scale, to capture the global behavior of
the signal: signal-to-noise ratio (S/N), quality and

anomaly attributes for AVO QC (Coleou et al.,
2013), and enhanced bandwidth at every precon-
ditioning step. These QCs can be viewed globally
or on selected horizons.

In short: tie the seismic to any other reliable data avail-
able, in our case log data, and use statistical QC indica-
tors on a more global basis, including horizon-based
QC, for stationarity analysis.

Three preconditioning procedures were performed
on the data set, taking special care to preserve low-fre-
quency content of the data:

• random noise attenuation applied to gathers
• structural filtering applied to angle stacks
• spectral shaping applied to angle stacks.

The projective filtering is carried out in the f -x
domain. For this case study, stronger denoising param-
eters were chosen for the high frequencies compared
with the low frequencies. This parameterization con-
centrates the energy of the residuals in the high-
frequency range, which is more affected by random
noise, and it better preserves the low frequencies.
The filter parameters are optimized using residual
analysis, AVO curve analysis before and after the filter
application, and AVO attribute analysis to ensure that
noise is attenuated without affecting the signal.

After gather preconditioning, the decision about an-
gle intervals for partial stack calculation is taken
through data evaluation, AVO analysis tests, and inver-
sion tests. The angle intervals should include seismic
data of sufficient quality and subsequently allow recov-
ery of the elastic properties in prestack inversion. The
angle stacks were defined as follows: 6°–18° (near),
16°–28° (mid), 26°–38° (far), and 36°–48° (ultra-far).

Structurally consistent filtering was applied to angle
stacks: It filters along the local dips computed on the
reference data. This filter decreases the energy of the
low-frequency component of the data and depends sig-
nificantly on the choice of reference data. This filter in-
creases the S/N values in all angle stacks, and Figure 7
shows the result for the mid angle stack. There is a
global increase in S/N extracted from the reservoir in-
terval visible in the attribute maps (a shift from blue to

red colors) and in the corresponding his-
tograms of the S/N values for the reser-
voir interval.

After evaluation of the results, differ-
ences in the frequency spectrum of the
partial stacks were observed (Figure 8),
with the high-frequency part of the spec-
trum becoming weaker and the low-fre-
quency part of the spectrum becoming
more prominent as the offset increases.
This is expected because attenuation of
seismic energy is frequency dependent
and increases with the travel path (i.e.,
the greater the offset, the greater the
attenuation of the high frequencies).

Figure 6. Rock-physics plot, well A — crossplot of lambda-rho versus mu-rho
values. Top: before detrending; bottom: after the elastic properties have been
detrended. The oil-saturated sand is better separated.
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Spectral shaping was applied to angle gathers to im-
prove the homogeneity of the frequency content be-
tween angle stacks. An individual matching operator
was calculated for the mid, far, and ultra-far stacks,
using the spectrum of the near stack as a reference.
The calculation was done over a short time gate of
300 ms to avoid the influence of vertical nonstationarity
in the frequency content of the data because no Q com-
pensation in amplitude had been previously applied to
the data. A representative set of traces
was selected for the calculation because
a single operator was derived for each
partial stack and was applied globally.
Figure 8 shows the spectra estimation
for angle stacks before and after spectral
shaping. A routine step in precondition-
ing workflows is a residual misalignment
correction between angle stacks. This
was tested on the full data set, but no
indication of its benefits was found from
a seismic inversion point of view (i.e.,
no obvious improvement in the well-to-
seismic calibration, the global AVO be-
havior, or elastic inversion results was
observed). An example gather is shown
in Figure 9f.

Having elastic property logs available
at well A, we were able to perform a lo-
cal QC of the calibration of the seismic
response to known measured data. We
used the sonic, shear, and density logs
to calculate the reflectivity at various in-
cidence angles using the full Zoeppritz
equations (1919). A synthetic prestack
data set was then generated with a 1D
convolutional model. These synthetic
AVO gathers were compared with the
real data at each step in the precondi-
tioning sequence, making it possible to check the cali-
bration of the AVO response of the seismic data to what
is expected from measured log data. Figure 9 shows
how the AVO response at the well A location was im-
proved at each step in the preconditioning sequence (in-
cluding spectral shaping) as shown by the decreasing
dispersion of the points around the regression (which
is preserved).

Coleou et al. (2013) introduce an efficient statistical
tool that helps to quantify and monitor the AVO compli-
ance of large amounts of prestack data, as well as iden-
tifying areas where further improvement in the data
quality are required. Repeatability attributes called
anomaly and quality, an orthogonalization of crosscor-
relation and normalized rms amplitude (Nrms), are cal-
culated between real traces and AVO model traces.
Focusing the analysis of those attributes over the main
interval of interest (approximately 400 ms centered on
the Santonian interval) at various steps in the precon-
ditioning sequence allowed us to statistically evaluate
the improvement in the data. Maps of the quality attrib-

ute calculated for the reservoir interval at the beginning
and end of the preconditioning sequence are displayed
in Figure 10, illustrating how the similarity of the real
and model traces increases during the preconditioning
sequence for all the angle stacks across the extent of
the study area. Figure 11 shows crossplots of the quality
and anomaly attributes calculated in a 400 ms time win-
dow at the reservoir level at the beginning and end of
the preconditioning sequence. After preconditioning,

Figure 7. S/N (in dB) estimated in the reservoir interval before (left) and after
(right) structurally consistent filter application for the midangle stack. Maps of
the S/N are shown in the top panels along with the location of well A. The lower
panels show the corresponding histograms of the S/N values and indicate the
color scale for the maps.

Figure 8. Amplitude spectra (in dB) for the angle stacks be-
fore (left) and after (right) spectral shaping.
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there is a shift in the value to higher quality and lower
anomaly, again indicating a quantitatively better fit be-
tween the real and model traces. Using these metrics,
we were able to gauge the data quality as well as mon-
itor the increase in confidence in the seismic data away
from well A where we know it is calibrated during the
preconditioning.

Interpretation of horizons and faults
The structural interpretation is usually performed

before reservoir characterization and inversion, using
the seismic amplitude data and seismic attribute analy-
sis. It can be further refined after the seismic attributes
and elastic properties have been calculated from the
data. In the context of highly reworked geology, with
faulting, potential large displacements, and lateral dis-
continuities in the seismic events, the low-frequency
information contained in broadband data provides valu-

able information for the interpreter. Previous work, in
particular by Duval (2012), has demonstrated the value
of broadband data for structural interpretation. We
further illustrate this with two examples, using our
preconditioned full-stack seismic cube as input. We first
performed manual picking of seismic events at the top
and bottom of the interval of interest. Second, coher-
ency-based attributes, routinely used for fault and frac-
ture detection, were calculated. To evaluate the impact
of low frequencies on those steps, they were performed
on the full-bandwidth broadband data and after applica-
tion of a 10 Hz low-cut filter.

During automatic picking, we observe that the seis-
mic events on broadband data present a more unique
waveform, due to the extended bandwidth and reduced
side lobes. The resulting reduced uncertainty in picking
can be seen in Figure 12, which shows the section
views of full-bandwidth broadband seismic data

(b) compared with the data without
low frequencies (a), after the applica-
tion of a 10 Hz low-cut filter. The bright
negative reflection (black horizon) cor-
responds to the top, and the positive re-
flector corresponds to the bottom (red
horizon) of the zone of interest. The
character (waveform and amplitude)
of these reflections is unique on broad-
band data and cannot be confused with
other events, whereas this uniqueness
disappears after low-cut filtering. The
filtered data allow for a wider range of
possibilities of interpretation based on
visual continuity in seismic events with
the same waveform and energy, illus-
trating the higher uncertainty in the re-
flector definition when the seismic data
lack low frequencies.

To further refine the interpretation
and reduce its uncertainty, the horizon
picking can be performed on impedance
or relative impedance volumes. It is
worth remembering that in the case of
broadband data, it is possible to have
fast-track inversion results for this pur-
pose very quickly after the processed
data are available (see section “Optimi-
zation of the inversion” of this paper).
The inversion process itself presents
the benefit of slightly extending the data
bandwidth on the high-frequency side
(Pendrel and Van Riel, 2000). It integra-
tes low-frequency information from an a
priori model with higher frequencies
coming from the seismic data, resulting
in a final model closer to the true reflec-
tivity model of the earth. Figure 12c
shows possible refining of the target bot-
tom (purple) interpretation on the rela-
tive inversion result (the detailed

Figure 9. AVO response at well A location for (a) synthetic gather, (b) input
gather, (c) after random noise attenuation, (d) after structural filter applied
to angle stacks, (e) after spectral shaping, (f) input gather at the well location
with Vclay and water saturation curve. Selected event corresponds to the bottom
of pay zone. (b-e) The progressive decreasing dispersion of the points around
the regression and preserving the AVO response that matches the synthetic
response (a).
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explanation of this volume calculation is presented in
the inversion chapter of this work).

Another task facing the seismic interpreter is locat-
ing subtle features such as faults and fractures within
the data volume. This task was significantly facilitated
after the introduction of the coherency attribute by
Bahorich and Farmer (1995). This attribute gives the in-
terpreter a clear visual indication of the continuity be-
tween seismic traces. Since that time, other attributes
using the same principle were developed and started
to be widely used for structural interpretation.

Our area of interest is characterized by complex tec-
tonics. To accurately define faults, we chose to calcu-
late a coherency class attribute called horizon edge
stacking. This attribute works well even on volumes
with steeply dipping events, and, with further data pre-
conditioning, it is suitable for subsequent automatic
fault tracking (more details can be found in Dorn et al.,
2012). Figure 13a shows a time slice of this attribute cal-
culated from the input broadband seismic stack — the
attribute clearly identifies the discontinuities present in
seismic events which can be interpreted as faults. The
same time slice has been extracted from the seismic
data without low frequencies (after low-cut filtering,
as shown in Figure 13b). Both clearly highlight discon-
tinuities in the eastern part of the map, where the
aligned areas of high attribute values (black) are lo-
cated in the middle of the area with low-background

values (white). Those discontinuities cutting through
more continuous reflection zones can be directly inter-
preted as faults, and they are also seen in the seismic
section view. In the central part of the time slices,
the seismic reflections contain multiple small-scale
discontinuities together with large-scale faults. In the
absence of low frequencies, these two types of discon-
tinuities are mixed in the attribute map into an uninter-
pretable product (Figure 13b). We interpret the better
delineation of the faults in the broadband data as
being due to the information contained in low frequen-
cies: The full bandwidth makes it possible to better
highlight the large-scale faults in zones with small-
scale discontinuities. As near-vertical events with low
apparent frequency, their energy is concentrated in
the lower frequencies. This can also be observed from
the sections in Figure 13: The section view of full-
bandwidth data contains distinct faults which appear
as low-frequency reflections and do not stand out as
clearly after the low frequencies in the data have been
filtered out.

Wavelet estimation
Wavelet estimation is a critical step for seismic res-

ervoir characterization workflows because it creates
the bridge between seismic reflections and the reflectiv-
ity series. Properly estimated amplitude and phase
spectra of the operators that match seismic and log data

Figure 10. Quality attribute (Coleou et al., 2013) maps calculated in a 400 ms window at the reservoir level for each angle stack.
(a) Raw angle stacks. (b) Final preconditioned angle stacks showing a shift to higher quality values and, therefore, a better match
with the AVO model.
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are key to successful acoustic and elastic inversions.
We can define two main approaches for wavelet estima-
tion — statistical and deterministic. The statistical
method uses only seismic data, whereas the determin-
istic method uses well log reflectivity (reflection coef-
ficients calculated from P-sonic, S-sonic, and density
logs using the Zoeppritz equations) with seismic data.

We performed the wavelet estimation in the Xelerete
test area in three steps, which can be summarized as
(1) statistical zero-phase wavelet estimation, followed
by (2) full-phase wavelet estimation at the wells only,
and finally (3) a low-frequency phase estimation. We
will discuss these methods in more detail.

Step 1 — Statistical zero-phase wavelet estimation:
The global initial zero-phase wavelet has an amplitude
spectrum based on the autocorrelation of the seismic
traces. The statistical wavelet for broadband data
should be estimated in a time window that is long
enough to cover frequencies as low as possible with
the S/N ratio of the processed data — a 1000 ms win-
dow was chosen in this case.

Step 2 — Deterministic wavelet estimation at well
locations, using the crosscorrelation between synthetic

and seismic traces in the target interval and the statis-
tical wavelet as additional input information. The stat-
istical wavelet estimated in step 1 contains the global
amplitude spectrum of the data in the selected interval
and is used to create synthetic traces using the convolu-
tional model (Edgar and van der Baan, 2011). Altering
the phase and amplitude spectra of the wavelet to reach
the maximum crosscorrelation between the synthetic
and seismic traces, we estimate the deterministic wave-
let at well locations. This wavelet contains the part of
the data spectrum which matches the well reflectivity
or, in other words, the part of the data spectrum con-
taining geologic information. The deterministic wavelet
extraction allows for a robust estimation of the phase
and amplitude spectra of the operator at well locations
when log data are available, presenting a reasonable
well-to-seismic tie characterized by the high crosscorre-
lation between seismic and well synthetic data, over a
sufficient time gate. As a general guideline, the extent in
time of the well logs should be 2–3 times the wavelet
length to obtain a stable estimation of the operator.

Figure 11. Quality and anomaly attributes (Coleou et al.,
2013) calculated in a 400 ms window at reservoir level and
displayed in a crossplot where each point represents a bin
in the survey. (a) Raw angle stacks. (b) Final preconditioned
angle stacks, showing an overall shift to higher values of qual-
ity and lower anomaly values, indicating a better fit with the
AVO model.

Figure 12. Section view with top and base of the interval of
interest interpreted: (a) on seismic data without low frequen-
cies (low-cut filter 10 Hz applied), (b) on full-bandwidth
broadband seismic data, and (c) on a detrended acoustic
impedance section (relative impedance values). It is easier
to pick the events on the full-bandwidth data due to the
sharper wavelet with reduced side lobes, but the impedance
section provides the clearest demarcation of the interval of
interest.
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Figure 14 shows the calibrations of wells A and B with
the full seismic stack and the deterministic wavelets ex-
tracted from these wells. The estimation at well A was
performed in a 400 ms time window, and the crosscorre-

lation graph has a well-defined maximum at the value
0.91. The wavelet estimation in well B was performed
in a 300 ms time window with a crosscorrelation of
0.81. The objective of the study is to identify the oil sand,

which can be identified by low values of
SW (water saturation) log in Figure 14.
The amplitude and phase spectra of the
deterministic operators are shown in Fig-
ure 15. The wavelet estimated in well B
displays a lower phase stability, especially
for high frequencies, and a lack of low-
frequency energy compared with the
wavelet estimated in well A. This lateral
variability in the energy concentrated at
low frequencies, which we observe be-
tween wells A and B (Figure 15), was con-
firmed by an extended lateral analysis:
Figure 16a contains the map of seismic
energy corresponding to the signal at
5 Hz in a time window of 600 ms around
the reservoir calculated for the full stack.
We observe that, for these low frequen-
cies, the energy of the seismic data is
highly variable, and the difference in sig-
nal content observed at the wells is not a
localized phenomenon. When compared
with other QC done on the full-bandwidth
full stack, these features are observable
on other attributes such as the dominant
frequency, bandwidth, or rms of the am-
plitudes (Figure 16b–16d), confirming that

the trend of low frequencies can be related to geology.
After analysis of the deterministic wavelets at each

well, and to obtain optimal wavelets for acoustic and
elastic inversions, the wavelet extraction is performed

Figure 13. Horizon edge attribute time slice and corresponding vertical sec-
tions for (a) full-bandwidth broadband seismic stack and (b) 10 Hz low-cut fil-
tered seismic stack. The full-bandwidth images provide a sharper image of the
faults and a cleaner discontinuity attribute map.

Figure 14. Well-to-seismic tie panel for two wells: well A and
well B with the corresponding wavelets estimated and cross-
correlation functions between synthetic (blue) and seismic
(black) traces. The wavelet estimated in well B displays lower
phase stability, especially for high frequencies, and a lack of
low-frequency energy compared with the wavelet estimated in
well A.

Figure 15. Amplitude and phase spectra of wavelets ex-
tracted in well A, well B, and multiwell wavelet extraction
which maximizes the crosscorrelation function calculated
in wells A and B simultaneously.
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using several wells simultaneously. The
process is called multiwell wavelet ex-
traction and estimates the wavelet that
maximizes a crosscorrelation function
calculated in several wells simultane-
ously. The “best” wells with reliable cal-
ibration are chosen to be used in this
kind of wavelet extraction — wells A
and B in our case. Well C is not used
due to it having the lowest crosscorrela-
tion coefficient and will only be used for
additional QC as a blind well.

When a multiwell wavelet is extracted
(Figure 15), it repeats the shape of the
wavelet “richest” in low frequencies, ex-
tracted in well A. For the high frequen-
cies, the multiwell wavelet follows the
poorest well wavelet. It is an important
fact to consider in the case where we
have well data in an area with poor low-
frequency content. The frequency map
analysis (Figure 16) performed jointly
with the final wavelet estimation is cru-
cial to avoid missing those low frequen-
cies in the final wavelet. If this range of
frequencies was not represented in the
operator, it would prevent the inversion
from properly recovering the corre-
sponding signal, missing out on one of
the main benefits of broadband data
for the inversion process. The multiwell
wavelet is reliable for mid and high
frequencies, but the phase estimation
in low frequencies (the first 10 Hz) re-
quires additional analysis, which is ex-
plained here as step 3 in our wavelet
estimation flow for broadband data.

Step 3 — Phase estimation for the low
frequencies was performed using three al-
ternative methods: (1) phase extrapola-
tion from mid toward low frequencies
as shown by Schakel and Mesdag (2014),
(2) maximum kurtosis determination, and
(3) wavelet estimation in wells A and C
that have the longest interval of logs in
the time domain.

Schakel and Mesdag (2014) suggest
that the phase of the broadband data
at low frequencies follows a linear trend
rather than being of a constant value in
this range, and they introduce a practical
approach to broadband wavelet estima-
tion. The phase of the multiwell wavelet
shown in Figure 15 is extrapolated to-
ward low frequencies following this first
phase estimation method, applied in this
case for frequencies of less than 7 Hz.
Indeed, none of the wells shows a reli-
able well-to-seismic tie in a time window

Figure 16. (a) Spectral decomposition result. Map of the energy corresponding
to the signal of 5 Hz in the full stack. (b) Dominant frequency of the full stack.
(c) Root-mean-square energy of the full-stack full bandwidth. (d) Bandwidth of
the full stack. This frequency attribute analysis was performed jointly with the
final wavelet estimation and is crucial to avoid missing the low frequencies in the
final wavelet. The maps indicate that well C is in an area where the seismic has
limited bandwidth.

Figure 17. Phase estimation using the maximum kurtosis method for different
bandwidths. (a) Phase histograms, (b) phase maps, and (c) the spectra for the
different frequency bands.
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greater than 400 ms. When trying to in-
crease the time gate used for the match,
we observe a drop in crosscorrelation
that does not allow us to have confidence
in the resulting wavelet.

The maximum kurtosis method is
based on the fact that seismic reflectiv-
ity sequences have amplitude distribu-
tions that are leptokurtic, that is to
say, they are more heavy-tailed than
a Gaussian distribution (White, 1988).
This method estimates a constant phase
shift over the input bandwidth. This
method is sensitive to the amount of
data used in the estimation in relation
to this threshold. The phase estimation
was performed using four different
bandwidths: 0–10 Hz, 0–20 Hz, 0–30 Hz,
and 0–40 Hz in a 2 s time window. Fig-
ure 17 shows the maps of the obtained
phase shifts (deviation from zero phase)
for each frequency range. The tendency
of phase values to increase toward the
lowest frequencies is in accordance with
what was seen in the multiwell wavelet
(Figure 15).

Two of the wells located in the area
(wells A and C) have representative in-
tervals of sonic and density logs avail-
able. However, neither of these wells
have a reliable well-to-full bandwidth
seismic tie for the whole interval of logs.
Therefore, the wavelets shown in Fig-
ures 14 and 15 were estimated in the
reservoir interval only. But the complete
time interval of available log data was
used in these wells to run a comparative
estimate of the phase for the low
frequencies between 0 and 10 Hz. Fig-
ure 18 shows the calibration of wells
A and C to the low-frequency part of
the seismic: 0–10 Hz. Well A was cali-
brated with low-pass-filtered seismic
in a 0.9 s long interval with crosscorre-
lation of 0.85, and well C was calibrated
in a 0.8 s long interval with a crosscor-
relation of 0.93.

The results of the three independent
methods of low-frequency phase evalu-
ation are compiled in Figure 19: the stat-
istical maximum kurtosis method, the
deterministic method through calibra-
tion of wells to the low-frequency part
of the seismic, and an empirical ap-
proach proposed by Schakel and Mes-
dag (2014) to follow the linear trend
extrapolating phases from mid to low
frequencies. All methods delivered con-
sistent results, and the multiwell wave-

Figure 18. Calibration of seismic to well log synthetics at wells A and C using
the low-frequency part of the seismic (0–10 Hz) helps decrease the uncertainty in
phase estimation for low frequencies.

Figure 19. Phase estimated for low frequencies using three different methods.
All methods delivered consistent results, and the uncertainty of the wavelet
phase estimation at low frequencies can be inferred from the spread observed
between the different methods and the multiwell wavelet.

Figure 20. Calibration of angle stacks with well A well log synthetics and cor-
responding wavelets extracted for use in the elastic inversion. AI, acoustic
impedance curve; SW, water saturation curve in well A.
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let with the phase shown as a black line in Figure 19 was
used in the following inversion. The uncertainty of the
wavelet phase estimation at low frequencies can be in-
ferred from the spread observed between the different
methods tested here: approximately ±15° around the
multiwell wavelet at 5 Hz.

To extract wavelets for the elastic inversion, the
same methodology was used to extract angle-depen-
dent wavelets for near, mid, far, and ultra-far angle
stack — the result is illustrated in Figure 20. Note that

in the elastic case, only well A had adequate logs to per-
form the deterministic wavelet extraction, and the other
wells do not have measured VS logs.

Optimization of the inversion
In accordance with the rock-physics analysis pre-

sented in the case study overview, two deterministic
inversions were performed sequentially with the corre-
sponding facies classification: poststack- and prestack-

constrained sparse-spike inversions.
A poststack or acoustic-constrained

sparse-spike inversion creates an acous-
tic impedance model from the seismic
reflection data. The P-impedance is
estimated by minimizing an objective
function that contains multiple terms:
residuals (the mismatch between seis-
mic and synthetic), a contrast misfit
(controls sparseness), a trend misfit
(the difference between the final result
and the initial impedance model), and a
soft spatial misfit (controls the lateral
smoothness of the result).

Deterministic inversion requires a
low-frequency model to bring into the
inversion result the low-frequency infor-
mation that is missing in seismic data.
The frequency bandwidth of this initial
model depends on the lowest usable fre-
quency (in terms of the S/N) of the seis-
mic data spectra. A wide gap of missing
low frequencies (e.g., 0–10 Hz typically
for conventional seismic data) will re-
quire building a detailed initial model.
The narrower the gap of absent seismic
frequencies, the more data driven the
inversion is. Initial models for conven-
tional seismic data are usually obtained
from low-pass-filtered elastic attributes
logs at the well locations, followed by
an interpolation method (kriging for in-
stance). This method of model building
requires stratigraphic model (frame-
work) to perform interpolation inside
it. This stage of the inversion workflow
brings significant uncertainty to the in-
version as the low-frequency model
created through log interpolation is con-
ditioned by the number of wells in the
area, the reliability of the stratigraphic
model used in the interpolation and
extrapolation of the sparse impedances,
and lateral variability in elastic proper-
ties (Pendrel and Van Riel, 2000).

Seismic data acquired using variable-
depth streamers are ideally suited for in-
version because they provide more of
these missing low frequencies (typically
down to 3 Hz), hence decreasing the

Figure 21. Crossline 6280 — time-frequency display of the energy of (a) initial
acoustic impedance initial model derived from seismic velocities and (b) full-
bandwidth seismic stack. Significant overlap around an average frequency of
3.5 Hz can be observed, confirming that no additional information is required
to recover a complete frequency bandwidth during the inversion.

Figure 22. Random line through three wells. (a) Seismic stack, (b) initial model,
and (c) acoustic inversion result. Well lithology logs are superimposed on the
inversion results. The oil sand lithology can be seen to match zones of low acous-
tic impedance as expected.
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dependence on well data to build the inversion low-fre-
quency initial models, which would now only need to
have a bandwidth of 0–4 Hz). The initial model created
directly from seismic velocity without use of a strati-
graphic model and seismic logs was used in our case.
Because the trace-based inversion algorithm was used
(not stratigraphic inversion), the structural framework
was not necessary to perform inversion. Figure 21 illus-
trates the time-frequency information contained in
1) the acoustic impedance initial model calculated
from seismic velocities and density cal-
culated from a sonic-density relation-
ship derived at the well and 2) the
seismic full stack. Significant overlap
around an average frequency of 3.5 Hz
can be observed, confirming that no ad-
ditional information is required to re-
cover a complete frequency bandwidth
during the inversion.

Figure 22a–22c shows an acoustic in-
version plot including seismic stack, ini-
tial model, and impedance obtained
from the acoustic inversion result. Fig-
ure 23 shows the QC of acoustic inver-
sion results at the wells, comparing the
impedance values of well logs and in-
verted values along wells. Because no
well interpolation was used in the low-
frequency model construction, the re-
sults are the direct consequence of the
calibration of the seismic velocity model
and seismic amplitudes. This plot dem-
onstrates the good match between the
final inversion results and the measured data from
wells, confirming the possibility to further use the inver-
sion results for qualitative and quantitative interpreta-
tion. Considering the low level of vertical details
introduced by the initial model (Figure 22b), the good
match observed is due to the information derived from
the broadband seismic data (and the low frequencies in
particular). We calculated the frequency-domain nor-
malized root-mean-square (fNrms) difference between
real data and inversion synthetic data. This attribute,
displayed in Figure 24 for crossline 6280 that runs close
to wells A and C, is useful to assess the quality of the
match between inverted synthetic and real data as a
function of frequency. We can observe in our case that
information is contained in the broadband data over a
large range of frequencies from 3.5 to 55 Hz. The match
then degrades toward frequencies of 70 Hz where no
valuable information is retrieved by the inversion
process.

Prestack or elastic-constrained sparse-spike inver-
sion creates a set of elastic models by simultaneously
inverting multiple seismic partial (angle or offset)
stacks. In our case, and following the results from
the initial rock-physics analysis, the acoustic (IP) and
shear (IS) impedance volumes obtained from the inver-

sion were used to calculate the Lamé impedances
lambda-rho and mu-rho.

Figure 25 shows a section view of these parameters
after applying detrending, and Figure 26 presents the
QC at well A comparing measured values from the well
logs to the inverted values.

A good match at the wells was observed for the
acoustic and elastic inversion results from the broad-
band data (Figures 23 and 26). The initial model for
inversion (Figure 22b) was created directly from the

Figure 23. Well QC of acoustic inversion. Black, acoustic impedance values
from well logs; (a) blue, acoustic impedance initial model; and (b) red, inverted
acoustic impedance. This demonstrates the good match between the final inver-
sion results and the measured data from wells, confirming the possibility to fur-
ther use the inversion results for qualitative and quantitative interpretation.

Figure 24. The fNrms (the difference between inverted real
and synthetic data for crossline 6280). We can observe a good
match from 3.5 to 55 Hz. The match then degrades toward
frequencies of 70 Hz where no valuable information is re-
trieved by the inversion process.
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seismic velocity without any use of filtered well data
and interpolation models. Thus, no horizon interpreta-
tions were necessary to create the initial model. This

makes broadband data inversion more data driven than
the conventional seismic data inversion, where the
intervention of geophysicists has a much bigger impact

on the result through the building of a
more detailed initial model. It also
speeds up the inversion workflow, mak-
ing it possible to achieve fast-track in-
version results very quickly after the
final processed seismic data become
available and therefore providing better
information earlier in the workflow to
support drilling decisions.

Lithofacies definition
and classification

With the results obtained from the
acoustic and elastic inversions, deter-
ministic and probabilistic interpreta-
tions were performed to localize the
reservoir pay zone.

Deterministic interpretation was per-
formed by application of a cutoff on the
inverted properties, as defined in Fig-
ure 5 for acoustic impedance values.
This result is shown in Figure 27a. This
zone matches with the pay zone in the
wells (orange), but the main limitation
of this approach is the absence of infor-
mation regarding the uncertainty related
to the classification. The ranges of facies
values we aim to identify (via acoustic

impedance or lambda-rho and mu-rho in our case) show
significant overlap with the other facies defined at the
wells. No related information is taken into account
when using a simple threshold for defining limits
between lithoclasses, whereas the uncertainty of the
classification will directly result from the degree of
overlap.

A more robust probabilistic approach was under-
taken through the application of a supervised Bayesian
classification technique to infer the probability of pre-
defined lithofacies from the inversion results (Mukerji
et al., 2001, Pendrel et al., 2006). To characterize the pay
zone, the three lithofacies (shale, water sands, and oil
sands) were first defined from well log information
such as porosity and saturations. The method then re-
quires the creation of probability density functions for
each facies, which determines the probability that a par-
ticular combination of elastic parameter values repre-
sents a given facies. This was done by creating a
histogram for acoustic inversion or a crossplot of the
elastic parameter curves (color coded by the facies
in Figure 28) and fitting a probability density function
(PDF) to the samples associated with each of the facies.
A prior probability of each facies can be estimated, in-
dicating the relative proportion of each facies that is
expected within the region of interest, or, as it was done
in our case — assuming that the a priori probabilities
equal: 33.3% — shale, 33.3% — oil sand, and 33.3% —

Figure 26. QC of elastic inversion in well A. Blue curve,
lambda-rho calculated from well logs in well A; red curve,
mu-rho calculated in well A; and purple curves, the corre-
sponding estimates from the inversion, which indicate a good
match with the well data.

Figure 25. Elastic inversion result after detrending. (a) Lambda-rho and (b) mu-
rho. Detrending of the elastic properties from inversion provides a better sep-
aration of the lithoclasses for interpretation.
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water sand. These facies-conditioned
PDFs and a priori geological informa-
tion are then combined within a Baye-
sian inference framework to generate
facies probability volumes from the in-
verted elastic parameter volumes. PDFs
were built using log information re-
sampled to 4 ms sample rate in time do-
main, same as seismic sample rate.
Figure 28a shows the PDFs established
using detrended impedance logs in wells
A, B, and C. These PDFs were applied to
our acoustic inversion result and give
the pay probability volume shown in
Figure 27b. Figure 28b shows the PDFs
established for the detrended lambda-
rho–mu-rho pair of parameters, and Fig-
ure 27c represents the result of facies
classification using the elastic inversion
result.

Comparing the classifications of the
elastic (Figure 27c) and acoustic (Fig-
ure 27b) inversions, a large reduction
in the predicted oil sands zone is ob-
served. The oil sands probabilities at
the wells in the elastic and acoustic
cases are shown in Figure 29 and are
compared with the water saturation
logs. Although the prediction of the
pay zone at the wells still matches with
log data, much of the predicted oil sand-
stones obtained in the acoustic case is
no longer present in the classification
from the elastic case. The classification performed us-
ing acoustic inversion results tends to overestimate the
amount of oil sands, whereas switching to the elastic
domain results in a more conservative prediction of
the pay zone in the area.

The benefits of broadband data for inversion and fa-
cies classification have been previously illustrated, in
particular, by demonstrating the uplift brought by the
low frequencies in recovering the absolute values of
elastic properties and subsequent reservoir delineation,
in particular in the case of thick reservoirs (Lafet et al.,
2012). In the inversion process, using broadband data
results in more seismic-driven inverted property vol-
umes. The final results are less dependent on the initial
model building, which can often be a major source of
uncertainty. Another aspect worth mentioning is the
fact that, within the seismic bandwidth, a better sepa-
ration of the facies is achieved when low frequencies
are present. We illustrate this aspect by showing the
training sets obtained by crossplotting lambda-rho
and mu-rho from wells applying 2 and 10 Hz low-cut
filters (Figure 30). The amount of overlap between fa-
cies (and therefore of uncertainty in the classification)
is significantly increased when the lower frequencies
are filtered out.

Figure 27. Interpretation of inversion results with well lithology logs superim-
posed: (a) Detrended acoustic impedance with cutoff threshold applied to sep-
arate the oil-saturated sandstone. (b) Pay probability obtained through Bayesian
classification of detrended acoustic inversion result (c) Pay probability obtained
through Bayesian classification of detrended elastic inversion result. The elastic
inversion pay probability provides a much more conservative interpretation of
oil sand distribution.

Figure 28. The PDFs used to perform the Bayesian lithoclas-
sification. (a) Detrended acoustic inversion PDFs and (b) de-
trended elastic inversion PDFs.
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Conclusion
Following the acquisition of a variable-depth

streamer survey by CGG in 2014 and the processing
of the seismic data, a specifically adapted broadband
seismic reservoir characterization workflow (including
data preconditioning, structural interpretation, wavelet
estimation, seismic inversion, and facies classification)
was performed to characterize the extent of the oil-
bearing Santonian sandstones identified at three explo-
ration wells. These steps should contribute to a better
understanding of the geology in the area, ultimately
leading to the building of a reliable reservoir model
populated with realistic properties.

We showed a seismic data imaging flow that uses
sparse log data for local QC around the wells and
global, horizon-based QC attributes elsewhere. We illus-
trated the potential difficulties and particular care that
should be taken when dealing with broadband data, and
we showed in which aspects it can provide additional
value to the interpreter compared with conventional
data. Lithofacies classification cubes of the target pay
zone have been computed from this workflow, showing
a good match with observations at the wells and along
with a quantification of the uncertainty inherent in the
classification method.

Several aspects of this work suggest that the benefits
of broadband data observed when running deterministic

inversion should extend to more ad-
vanced inversion processes. In particu-
lar, we showed how broadband data
also benefit the structural interpretation
(geology), geometric attributes, and PDF
construction aspects, all of which can
be integrated into a stochastic inversion
workflow. A natural extension to this
work would therefore be to further ex-
plore how broadband data can be used
as an input to geostatistical workflows.
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