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David Riffault, Toni Uwaga, Pablo Cifuentes, Adnan Khalid and 
Rémi Moyen, CGG, explain how multi-scale ensemble-based history 

matching was used to forecast production for a gas field in Asia.

P
roduction forecasting is a basic requirement 
for planning the future development of a field, 
optimising reserve recovery and selecting 

the optimum location for new wells. However, the 
task can be challenging owing to the complexity 
of the reservoir and the scarcity of available data. 
Understanding uncertainty in the reservoir model 
is key, so stochastic methods that generate a range 
of model realisations are preferred for uncertainty 
assessment. However, this approach leads to a 
large number of models that can be cumbersome 

to handle in a conventional workflow. As a result, 
CGG has developed a new technology that can 
help to optimise an existing reservoir model by 
maintaining a fine balance between all the elements 
being considered during the model building process 
and a field’s production history data. Multi-scale 
ensemble-based history matching is an efficient, 
automated approach that is designed to update a 
large set of model realisations in order to assimilate 
production data and hence provide a high-quality 
set of models tuned for production forecasting.
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Multi-scale ensemble-based history matching 
Due to its simplicity and flexibility, ensemble-based optimisation, 
known as EnOpt, is a widely used method for history matching.1,2,3 
It assimilates production history data into a set of model 
realisations, called a prior ensemble, which reflects the 
uncertainties and correlations between spatial properties (e.g. 
porosity, permeability and net-to-gross ratio) and can integrate 
many sources of information, such as well logs, geological 
knowledge and seismic data. 

Although EnOpt provides satisfactory history matches of the 
production data by updating the prior ensemble, it can corrupt 

the information contained in this ensemble due to spurious 
correlations and may create geologically implausible scenarios.

To better preserve the information contained in the prior 
ensemble, CGG’s new EBMatch software applies the multi-scale 
ensemble-based optimisation method (MS-EnOpt). It breaks 
down the spatial properties of the prior ensemble (using a 
second-generation wavelet transform) into coefficients that 
are both localised in space and frequency and represent the 
information in the model at different scales, i.e. degrees of 
coarseness.4,5

Instead of updating the full prior ensemble frequency content, 
as EnOpt does, the first iterations of the 
multi-scale approach only update the 
subset of the coarse-scale parameters. 
Owing to the sparse representation 
property of the wavelet transform, the 
spatial properties are well represented 
using only this coarse subset (Figure 1). 
The simulated flow response of the model 
is greatly affected by changes at this scale 
without corrupting the ensemble (limiting 
the impact of the spurious correlations).6 
Coarse-scale coefficients characterise 
large geological features, such as 
channels and depositional structures, 
while fine-scale coefficients characterise 
smaller structures often located 
around the wells, such as flow barriers 
and high-permeability layers. As the 
iterations progress, the parameterisation 
is gradually refined by introducing 
finer-scale coefficients to further reduce 
the mismatch. Only a few iterations are 
needed to integrate the model detail 
provided by the fine-scale coefficients so 
that the introduction of high-frequency 
content, often associated with noise, 
remains limited.

Assimilating geological, 
petrophysical and 
geophysical data
The following case study discusses a 
gas field in Asia with over 20 years of 
production history. The reservoir is 
composed of variable-quality sands where 
porosity-preserving chlorite is present, 
which greatly affects the fluid flow.

A static model of porosity and shale 
volume (Vshale), called a well-based 
model, was created from well log data. A 
depositional conceptual model was also 
used as a background trend to ensure 
the geological observations in wells were 
respected.

To integrate the seismic data into the 
reservoir modelling workflow, stochastic 
acoustic inversion was run to generate 
100 realisations of high-resolution 
impedance models. All wells were used 
for the stochastic inversion, with missing 
elastic logs estimated from the available 

Figure 1. Second-generation wavelet decomposition and reconstruction of a grid porosity model 
using only the chosen-scale parameters. Top: the reconstruction of the porosity model using only the 
coarsest-scale parameters. Owing to the sparse representation of the transform, geological features 
are still clearly identified. Bottom: the full reconstruction of the model using all-scale parameters 
(equivalent to the original porosity model before decomposition).

Figure 2. Generation of a seismic-constrained ensemble of models. First, a well-based model of 
porosity and Vshale is built from well logs and a conceptual model. Then, a petrophysical inversion is 
performed to assimilate impedances from a seismic stochastic inversion using a calibrated petroelastic 
model. The resulting ensemble is a set of porosity and Vshale realisations constrained by the seismic 
attributes and consistent with the petrophysics and the geology.
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petrophysical logs using petroelastic 
models (PEMs). The PEMs were calibrated 
at well locations with a full suite of logs 
and using data from laboratory rock 
sample experiments.

This set of 100 grid models of P-wave 
impedances (Ip), generated from the 
geostatistical inversion, matched both 
the acquired seismic and the well logs. 

The well-based geostatistical models 
and the stochastic inversion results were 
then reconciled using ensemble-based 
petrophysical inversion (Figure 2).7 Using 
the porosities from the petrophysical 
inversion as a background trend, 
100 permeability models were modelled 
from a sequential Gaussian simulation 
(SGS).

The petrophysical inversion 
generated models with a lower average 
porosity value when compared with the 
well-based model (Figure 3). Wells are 
mostly drilled in high-quality reservoir 
zones and are therefore not always 
representative of the entire reservoir. 
The assimilation of seismic data suggests 
the porosity is overestimated away from 
the wells in the well-based model.

Validity of the ensemble
In order to quantify the quality of the 
resulting ensemble a flow simulation 
was performed (without any history 
matching) on the well-based model 
and on the 100 seismic-constrained 
models generated by the petrophysical 
inversion.

When compared with observed 
bottomhole pressure measurements, 
the simulated pressures obtained 
by these flow simulations showed 
much better accuracy for the 
seismic-constrained models than the 
well-based model (green and grey 
curves in Figure 4). This is the result of 
the integration of the seismic attributes 
and rock physics studies during the 
petrophysical inversion, reducing the 
inter-well porosity values and improving 
the quality of the ensemble.

Assimilating production 
data
After the prior ensemble of static 
porosity, Vshale and permeability 
models were carefully created from 
all available geological, petrophysical 
and geophysical data, a multi-scale 
ensemble-based history matching 
workflow was used. This ensured that 
the information in the model was not 
corrupted during the history matching.

Figure 3. Left: average porosity maps of the well-based model before petrophysical inversion, top, and 
of one realisation (#13) of the petrophysical inversion, bottom. The circle highlights a decrease in the 
porosity away from the wells based on the information in the seismic data. Top right: the histogram 
of the porosity values around the wells shows the same distribution for wells and models before and 
after the petrophysical inversion. Bottom right: the histogram of the porosity for the entire grid shows a 
decrease in porosity for all models after petrophysical inversion.

Figure 4. Top: field gas production rate for the first 18 years of production. Red dots are the actual 
production history. Bottom: W12 well bottomhole pressure is represented for the first 18 years of 
production. Red dots are actual pressure history. The green curve is the simulated result of the static 
model before the petrophysical inversion. Grey curves represent the 100 simulated models after the 
petrophysical inversion but before the history matching, showing that the match was improved by 
integrating the seismic data. The blue curves are the 100 simulated models after multi-scale history 
matching. History-matched gas production curves are a perfect match and are therefore stacked on top 
of each other.
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The production data used for the history matching were the 
gas production rate (GPR), as the primary data to be matched, 
and the well bottomhole pressure (WBHP), as the secondary data 
to be matched. Of the 22 years of production history available, 
only the first 18 years were used for history matching. This meant 
that the remaining four years could be used to quality control a 
pseudo-forecast from the models.

A localisation area was defined around each of the eight 
producer wells to restrict property changes around them and 
hence further reduce the risk of spurious correlations. These areas 
followed a structural trend of 45˚(north east – south west) to 
honour the geological depositional model. A north/south sealing 
fault was used to divide the areas into two groups and assign 
each well to either the eastern or western part of the reservoir. 
This ensured wells located on the western part were not used to 
update the models on the eastern part. The size of the localisation 
changed according to the iteration scale: areas were larger for the 
coarsest scales and smaller for the finest scales.

EBMatch iterations were run from scale 1 (coarsest) to scale 7 
(finest). A perfect match with the GPR was achieved, and the 
bottomhole pressure match was also greatly improved (Figure 4).

Quality control of the changes in the grid properties during the 
multi-scale history matching showed changes were mostly made 
in the coarse-scale content. The prior ensemble had therefore 
been well preserved with very little editing of the fine-scale 
content (Figure 5).

Forecasting
To quantify the quality of the ensemble generated by the 
multi-scale ensemble-based history matching, a pseudo-forecast 
of the GPR for four years was made on both the prior ensemble 
and the multi-scale history-matched ensemble of models. The four 
years of production history that was excluded from the history 
match was used as quality criteria to evaluate the forecast results. 

The results of the pseudo-forecast test show the prior 
ensemble overestimated the bottomhole pressure (Figure 6), while 
a more accurate prediction of the pressure was achieved by the 
multi-scale history-matched ensemble. 

Conclusion
For this case study, the integration of multiple sources of 
reservoir information brought a significant benefit for production 
forecasting. First, an ensemble-based petrophysical inversion 
made it possible to create multiple reservoir property scenarios 
that were all consistent with the rock physics study, the 
geological model building and the geophysical data. Then, 
a proprietary multi-scale ensemble-based history matching 
workflow tool was used to integrate production data while 
preserving all previously assimilated information. This approach 
ensured that the models chosen as being the most representative 
of the actual reservoir were not only the ones with the best 
history match, but also the ones that respected all the available 
information with an effective integration of the seismic data into 
the dynamic workflows. This will produce a group of accurate 
forecasts going forward. Furthermore, this means that multi-scale 
ensemble-based history matching can be used to provide a 
range of forecast scenarios from an ensemble of models that 
incorporates the key uncertainties of the reservoir, effectively 
integrating different data sources – such as seismic, log and core 
data – and providing engineers with a deeper insight for field 
development planning and production management. 
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Figure 5. Porosity map (layer 30 of 43) from realisation 8. On the right, 
the porosity is the final result from the multi-scale history matching, and 
it remains very close to the prior model on the left. Changes are only 
visible around the wells highlighted by the circles and are due to the last 
fine-scale iterations. Large-scale changes in the first iterations can only 
be seen when looking at the low-frequency content.

Figure 6. W12 well bottomhole pressure forecast (purple) over four 
years. Red and purple dots are well pressure measurement data. 
Top: the forecast is obtained using the ensemble before history matching, 
in grey, and before the petrophysical inversion, in green. Bottom: the 
forecast is obtained from the multi-scale history-matched ensemble. 
Only red values are used as a constraint for the history matching. This 
pseudo forecast presents a more accurate match of the last two purple 
values used for quality control.


