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Summary 

 

Machine learning (ML) has garnered great attention within 

the field of seismic processing due to its vast achievements 

for quality and efficiency in the area of computer vision. 

Recent academic papers have demonstrated some potential 

for the use of machine learning in processing seismic signal, 

such as random and coherent noise removal, deblending, and 

interpolation. In this paper, we illustrate some uses of ML on 

real 3D seismic data and discuss the common challenges that 

need to be addressed in order to fulfill the promises of the 

deep neural network (DNN) for seismic processing. We also 

point out that, in some cases, the result of ML could be good 

enough for some fit-for-purpose applications. Finally, we 

summarize a few learnings based on our research and 

experiences in both the seismic processing and ML worlds. 
 

Introduction 

 

ML algorithms are usually categorized as supervised or 

unsupervised. DNN, a family of supervised learning, 

represents a way to efficiently parameterize a non-linear 

function that maps an input to a given output (or target). For 

seismic processing, the input often relates to the raw seismic 

data to be processed, while the target is the output obtained 

from the physics-based algorithms. DNN-based methods 

involve two phases: 1. Training: learning the mapping 

function (or DNN model) from known inputs to outputs 

(targets), i.e., supervised learning; 2. Inference: mapping the 

input to an unknown output with the trained model.  

 

Unlike supervised learning, unsupervised learning only 

requires the input data without outputs (or target), such as 

principal component analysis (PCA), outlier detection, and 

clustering. Unsupervised learning is performed to learn 

about patterns in the data. It has wide applications in seismic 

data analysis and QC. Hou et al. (2019a) propose to use 

unsupervised machine learning technologies to help 

geophysicists analyze seismic data more efficiently without 

compromising detail. The same technologies can also be 

used for dispersion curve picking QC (Masclet et al., 2019), 

first break picking QC, and FWI cycle-skipping QC (Dinh et 

al, 2020). 

 

Deep neural network for seismic processing 

 

To illustrate the potential of using DNNs to process seismic 

data, we applied the U-Net (Ronneberger et al., 2015) 

architecture to the seismic deblending problem. Modern 

seismic data involves multiple sources firing with a high 

shooting rate, which causes the wavefield to overlap (blend) 

in the recorded data. Conventional physics-based 

deblending, the process of isolating the individual source 

wavefields, takes the source firing times, sequences, and 

physical signal behavior into account in order to separate and 

obtain cleaned shot records for each individual source. The 

training dataset was chosen from a sparse grid of sail lines. 

We validated the application of the DNN by comparing with 

results from physics-based deblending on validation data, 

which was a few kilometers away from the sail lines used in 

the training phase. 

 

Figure 1 shows a comparison of the physics-based 

deblending and DNN deblending results. The U-Net model 

was first trained on a subset of physics-based deblended data 

and then applied to the validation data (Figures 1a and 1c). 

At first glance, the DNN model generates comparable results 

to the physics-based approach. Careful examination reveals 

low-frequency signal leakage of deeper events in the DNN 

result when we gain up the difference (physics-based result 

minus DNN result) by 20 dB (Figure 1d). 

 

For a further test, instead of learning a single processing step, 

we tested the DNN capability for a fast-track processing 

workflow that combines the steps of deblending, denoise, 

and deghosting into one single DNN model. The level of 

non-linearity of the problem has dramatically increased, as 

the DNN model not only needs to remove coherent and 

random noise but also shape the seismic wavelets in 

deghosting. Figure 2 shows that the DNN is able to produce 

a comparable result to the physics-based approach, except 

that there is clear signal leakage after gaining up 20 dB, 

leading to a similar conclusion as in the previous case.  

 

Both of these examples demonstrate the capability of DNN 

to learn most physics-based seismic processing methods. 

Next, we highlight a few common challenges to be addressed 

before bringing the DNN tool into production. 

 

1. Signal fidelity preservation (Hou and Hoeber, 2020): 

DNNs for computer vision are used to find locations 

(for object detection) and object boundaries (for 

semantic segmentation), and determine classes mainly 

based on shapes and colors. The results are less 

sensitive to the pixel-level details from the inputs, and 

the decision is less impacted by minor imperfections. In 

contrast, seismic processing requires a high standard of 

signal fidelity as there are physical meanings for each 

wiggle that require in-depth analysis before making an 

impactful business decision. This means that the 

outputs are sensitive to not only the general shapes but 

also the signal amplitude and phase. Weak events in 

seismic data (e.g., diffractions, poorly illuminated 

targets) are normally much more important than the 

10.1190/segam2021-3590137.1
Page    3204

© 2021 Society of Exploration Geophysicists
First International Meeting for Applied Geoscience & Energy

D
ow

nl
oa

de
d 

09
/0

9/
21

 to
 1

65
.2

25
.2

16
.1

12
. R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

S
E

G
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 T

er
m

s 
of

 U
se

 a
t h

ttp
://

lib
ra

ry
.s

eg
.o

rg
/p

ag
e/

po
lic

ie
s/

te
rm

s
D

O
I:1

0.
11

90
/s

eg
am

20
21

-3
59

01
37

.1



Machine learning for seismic processing 

strong events. Non-stationarity of the amplitudes and 

wavelet (due to geological, divergence, and attenuation 

effects) add further complications that indicate even the 

best off-the-shelf DNN models from computer vision 

need to be further optimized for seismic data 

processing. 

  

2. Training data set generation and selection: The choice 

of the training dataset is as important as or even more 

important than the choice of the DNN architecture. The 

accuracy in the training dataset affects the general 

accuracy of the model, while the statistical distribution 

(a) Input (d) Difference (+20 dB) (b) Physics-based pre-processing 

 
(c) DNN pre-processing 

 
Figure 2 Shot records from field data: (a) Input to pre-processing; (b) physics-based pre-processing; (c) DNN pre-processing of (a); (d) 
difference of (b) minus (c) with 20 dB gain. 

(a) Input (d) Difference (+20 dB) (b) Physics-based deblending (c) DNN deblending 

Figure 1 Common channel gathers from field data: (a) input to deblending; (b) physics-based deblending of (a); (c) DNN deblending of (a); 

(d) difference of (b) minus (c) with 20 dB gain of amplitude. 
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Machine learning for seismic processing 

similarity between the training dataset and the full 

production dataset affects the performance of the DNN 

model. For example, if the target of the training dataset 

contains primary leakage, the output of the DNN model 

is expected to have a similar level of primary leakage 

as well. One can use synthetic data as the training 

dataset to have the best accuracy (i.e., with no primary 

leakage as the exact processing is known), but the 

model performance on field data will be heavily 

compromised due to the “domain shift” problem. Thus, 

to obtain the best DNN result in seismic processing, it 

is necessary to continue evolving the conventional 

processing toolbox in order to improve the training 

dataset quality, and have robust training data selection 

logic to ensure the model performance on real data is as 

accurate as possible. 

 

3. Balancing the local and global performance: Physics-

based algorithms often utilize iterative optimization for 

each spatial and/or temporal window of seismic data, 

which leads to the theoretically optimal solution for 

each input. However, these algorithms might suffer 

from unexpected noise, geological variation, or other 

edge-cases. On the contrary, DNN approximates a 

function for the whole dataset, here called the global 

optimal, and is more robust to data containing 

unexpected noise and artifacts. This is considered a 

primary advantage of DNN over conventional methods 

(Hou et al., 2019b). But this “global optimal 

performance” might imply a critical issue: it tends to 

compromise the quality of areas with rare features or 

abnormal geology, which are likely to be the areas of 

interest. As a result, it is necessary to develop proper 

metrics to evaluate the model with respect to the 

application dataset to ensure it captures authentic local 

geological variation found in the application dataset 

without overfitting the noise. 

 

Although the accuracy of DNNs has not yet met the 

production standards of existing high-end seismic 

processing toolboxes, there are specific applications where 

the trade-off between DNN quality and computation 

efficiency can be exploited. For example, guided denoise 

requires generation of clean synthetic data and uses the 

kinematics (instead of amplitude) to guide the noise removal 

algorithms. However, it is computationally intensive to 

model the full synthetic data. Figure 3b shows an example 

of using a DNN to interpolate the synthetic shot gather from 

a sparse trace interval of 37.5 m to a dense trace interval of 

12.5 m. It is comparable to the dense synthetic shot gather 

(Figure 3a) obtained purely via forward modeling. With the 

help of DNN, we save 2/3 of the runtime for synthetic 

modeling (at 37.5 m rather than 12.5 m), while the DNN 

runtime for interpolation is negligible by comparison.  

 

Reduce human efforts with machine learning 

 

For seismic processing technology, the goal is not only to 

achieve higher accuracy but also to reduce project 

turnaround time. Beneath the iceberg, the most time 

consuming steps during the processing flow are often those 

that require human intervention, e.g., first break picking, 

dispersion curve picking, QC. These processes rely mostly 

on visual perception and have less physics behind them. 

Although some rule-based methods were developed to 

automate these tasks, there are still significant human efforts 

(a)  (b)  (c) 

Figure 3 Synthetic shot gathers (a) from forward modeling at 12.5 m interval; (b) from forward modeling at 37.5 m interval followed by DNN 

interpolation from 37.5 m to 12.5 m interval; (c) difference between (a) and (b). 
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Machine learning for seismic processing 

involved. With modern high-density seismic surveys, where 

we collect tens of billions of traces, it becomes even more 

important to seek out efficiency gains and to reduce time 

spent on the more mundane processing aspects, in order to 

leave more time to focus on the critical aspects of the 

analysis.  

 

Moreover, for some specific tasks, supervised ML, like 

DNN, can produce more robust solutions than manual 

picking and simple rule-based algorithms. This means less 

human intervention. Figure 4 shows an example of 3C ocean 

bottom node residual orientation correction. In a 

conventional rule-based node orientation workflow, the 

algorithm iteratively inverts the rotation matrix to minimize 

the mean absolute amplitude of the direct arrival in the 

transverse component. It does not inspect the polarity and 

patterns of the direct arrival amplitude on other components. 

As a result, it can sometimes be trapped into the local 

minima, which completely flips the input data polarity, as 

shown in Figure 4b. The geophysicist has to spend time to 

carefully QC the result to flag this problem. On the other 

hand, the DNN (Figure 4c) analyzes the amplitude maps of 

all components simultaneously and inverts for a more 

reliable rotation matrix. It is more robust to noise and does 

not suffer from the issue of reverse polarity, thus requiring 

less human intervention. Similarly, the DNN can be applied 

for other tasks, such as repositioning and clock drift 

detection.  

 

 
 

Discussion and Conclusions 

 

Seismic processing, unlike regular computer vision routine 

tasks, requires very high standards for the preservation and 

extraction of signal fidelity, due to (1) most of the signals of 

our targets are extremely weak in the raw data; (2) any 

damage caused by one processing step may be amplified in 

later steps due to the non-linear nature of inversion 

algorithms; and (3) final processed results are quantitatively 

analyzed by multi-disciplinary teams to support impactful 

business decisions.  

 

We have discussed various challenges and limitations 

associated with the application of DNN and ML to seismic 

processing. After the initial rush of excitement, we are now 

in a phase of realizing the limitations and inherent 

uncertainties with ML algorithms in seismic processing. 

First of all, DNN can be trained as an efficient 

approximation of processing algorithms, but the accuracy 

relies on the quality of the training dataset. As the training 

datasets are usually obtained via conventional processing 

flows, the physics-based algorithms still play a central role 

in seismic processing and should continue to be further 

developed. Secondly, even the best off-the-shelf DNNs need 

to be further optimized for seismic data processing in order 

to fulfill the high standard in signal fidelity (Messud and 

Chambefort, 2020). There are also other practical issues that 

need to be further addressed, such as training data selection, 

uncertainty qualification, and model interpretability. In our 

view, ML will not replace human expertise or geophysical 

algorithms, but it can augment human and geophysical 

algorithms to achieve more robust and efficient solutions, 

together. 

 

Moreover, with the rapidly growing trace counts in newly-

acquired seismic datasets, it becomes more and more 

challenging for geophysicists to comprehensively inspect 

and analyze all of the data. ML is able to leverage the “big 

data” effect and helps geophysicists perform large-scale data 

analysis more efficiently. Moreover, the example of node 

orientation QC demonstrates that DNN could produce a 

more robust solution than that of simple rule-based methods. 

 

In summary, ML is clearly an exciting, fast-moving 

emerging technology. Further research and development is 

needed to address the key challenges before it can become a 

routine part of the seismic processing toolbox.  
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X Y Z 

(a) 

R 

(b) 

(c) 

Figure 4. Amplitude maps along direct arrival of x-component 

(X), y-component (Y), vertical component (Z), radial 
component (R), and transverse component (T): (a) raw data with 

orientation error; (b) corrected via the rule-based algorithm; (c) 

corrected via DNN. 

T 
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