
SPECIAL TOPIC: DIGITALIZATION / MACHINE LEARNING

F I R S T B R E A K I V O L U M E 4 0 I F E B R U A R Y 2 0 2 2 7 3

can be applied, and the figures need to be located before they can
be classified. The automated pipeline is run on a user-specified
dataset, which can consist of various file types, such as PDF,
Word doc, Excel and CSV, and different image files, such as TIFF
and PNG, etc. After initial ingestion, each of the components will
be triggered in turn automatically as soon as its dependencies
have completed successfully.

There are two advantages to our automated approach.
Metadata in the file path or manual labelling can only support a
single high-level label. Using the pipeline, a much more granular
classification of the contents can be achieved at a paragraph or
page object level. Secondly, many documents can be processed
much more quickly. As an illustration, a previous project took
16 people 14 months to complete, whereas a recent equivalent
project using the pipeline took 2 people 1 month, including
computing time. This is a hundred times faster!

This article will focus on the machine learning steps in our
pipeline, namely document layout analysis, image classification,
named entity recognition and table cell classification. In recent
times, machine learning has become increasingly dominated by
deep learning models. These are data-hungry algorithms that
need to be trained on large volumes of labelled input data. For

A machine learning pipeline for document extraction
Chin Hang Lun1*, Thomas Hewitt1 and Song Hou1 discuss how machine learning can be used
most effectively to classify documents.

Introduction
Each year the geoscience industry creates huge volumes of
documents containing data, research, and plans, which describe
valuable subsurface assets. These documents contain a wealth
of knowledge in the form of text, figures, and tables which are
intended to be read by humans and cannot be easily queried or
extracted. It is important to incorporate all sources of data to
create a holistic model of the subsurface and therefore reduce
exploration and development risks. Key to the successful extrac-
tion and transformation of data is an understanding of the nature
of the data that exists within a corpus of files. This is achieved
by labelling files based on the data that they contain so that they
can be grouped and prioritised for extraction. Some easy wins for
labelling can be achieved in the case of well organised datasets
where key information about the file is contained in its file path.
However, this information is often not consistently captured and
hence requires many search terms to group files. In less organised
datasets it is often the case that key information is not captured
within the path or is of insufficient detail to provide a useful
label. In these cases, the only solution to reliably classify files
is to manually open and review each document in turn. This is
feasible for a small number of files but as dataset sizes grow,
the time required to understand what is contained in a dataset
increases dramatically.

For large datasets, it would be more efficient to develop an
automated way to find the key terms within a piece of text, identify
the figures and tables on a page, and classify the document, in order
to help domain experts explore the vast document landscape.

In recent years, there have been huge advances in machine
learning, computer vision, and natural language processing
(NLP). These disciplines are concerned with the develop-
ment of algorithms that enable machines to understand images
and human-written languages. In this article, we discuss how
machine learning is used at CGG to classify documents. Machine
learning models are just one component of a larger pipeline
which includes other data classification, data extraction, and
data curation technologies. The pipeline can be described by
a directed acyclic graph (DAG). See the example in Figure 1,
which sets out the components or steps in the pipeline as well as
the dependencies between each component. A dependency arises
when a step requires the output of other steps. For example, the
text on a page of a document needs to be extracted (using optical
character recognition (OCR), for example) before an NLP model

1 CGG
* Corresponding author, E-mail: chinhang.lun@cgg.com

DOI: 10.3997/1365-2397.fb2022016

Figure 1 An example of a DAG describing the classification pipeline. The workflow
starts from the top and an arrow indicates the direction of the flow of data.

SPECIAL TOPIC: DIGITALIZATION / MACHINE LEARNING

7 4 F I R S T B R E A K I V O L U M E 4 0 I F E B R U A R Y 2 0 2 2

There are many publicly available datasets for document
layout analysis; the largest ones being PubLayNet (Zhong et al.,
2019) and DocBank (Li et al., 2020). However, these datasets
were drawn from a narrow range of sources: the former from
medical papers in PubMed and the latter from physics, mathe-
matics, and computer science papers from arXiv. Moreover, they
are all LaTeX-generated and relatively new, which means that
examples from these datasets can look very different from the
reports and papers in geology, which could be many decades old.
It is therefore not surprising that the model pretrained on these
datasets does not perform very well on geological documents. For
this reason, we have created a new dataset by sampling a subset
of document pages from our internal corpus and having them
annotated by CGG domain experts.

The number of examples in our training set is insufficient to
train a deep learning model from scratch, but we can fine-tune
the model that was first trained on DocBank (or PubLayNet).
One way of improving the performance of our model is to use
more high-quality training data. However, as manually labelling
a dataset is time-consuming, we have developed a method of gen-
erating synthetic document pages to complement our manually
labelled dataset.

Training the model on our own dataset and then on the
synthetic data greatly improves the performance compared to a
model trained purely on the public dataset. Examples of predic-
tions made by our model are shown in Figure 2.

Image classification
Once the location of the figures has been identified, the figures
are passed on to a computer vision model for classification. A
figure in a document can be a multitude of things, such as a
graph, a seismic image, a core photo, or a thin section image, and
each contains different types of information that would require
a different process to extract useful data. Image classification is
therefore a necessary step to allow the pipeline to automatically
trigger the appropriate workflow to further process the image.

this reason, part of the discussion will focus on how we obtain
high-quality training data to train our models. Finally, we discuss
how we deploy the machine learning models and the pipeline to
process documents at scale.

Document layout analysis
Documents in geoscience and geology are often complex,
containing not only text but also figures and tables which often
reference each other. A first step towards machine document
understanding is the ability to identify the components, such as
paragraphs of text, tables, figures, title, and the table of contents
on each page of the document – a task called document layout
analysis. The identified components can then be further processed
by the appropriate algorithms, such as image classification and
table cell classification for the figures and tables, respectively,
which we will discuss in subsequent sections.

The document layout analysis task is performed with a
computer vision algorithm. Computer vision is a scientific field
that deals with computer understanding of images or a sequence
of images. The goal is often to automate tasks, such as image
recognition, instance segmentation, and object detection. This
identification may come naturally to humans in most scenarios,
but it can be difficult or even impossible to describe how they are
accomplished. The task we will focus on is object detection which
involves predicting the bounding box of an object in an image
and classifying the object within the bounding box. In the context
of document layout analysis, the image would be of a document
page and the classes of objects would be paragraphs, tables, and
figures, etc.

Since 2012, after a convolutional neural network (CNN)
called AlexNet (Krizhevsky et al., 2012) won the ImageNet chal-
lenge, CNNs have been the go-to model in computer vision. In
our workflow, a model called Faster R-CNN (Ren et al., 2015) is
used. The model treats the task as a supervised machine learning
problem, which means that the model is trained using images,
together with the desired predictions for each training image.

Figure 2 Example predictions of object detection. The left-hand image shows the detection of paragraphs (red), lists (blue) and titles (light green). The right-hand image
shows the detection of figures (dark green).

SPECIAL TOPIC: DIGITALIZATION / MACHINE LEARNING

F I R S T B R E A K I V O L U M E 4 0 I F E B R U A R Y 2 0 2 2 7 5

Natural language processing
Natural language processing (NLP) is a set of methods that enable
machines to process human-written languages. Examples of tasks
include text generation, text summarisation, text classification,
and named entity recognition (NER), the latter of which will be
the focus of this article. NER is a task concerned with identifying
spans of text which constitute a named entity. A named entity
or entity is anything that can be referred to with a proper name,
such as a person or location, but can also include numerical
values, such as dates and measurements. A typical application in
geology is to identify terms such as well names, formation names,
biostratigraphic taxa, or certain scientific measurements.

State-of-the-art NLP models are now dominated by deep
learning architectures, particularly transformer transformer-based
models (Vaswani et al., 2017), such as BERT (Devlin et al.,
2019) and GPT-3 (Brown et al., 2020), which contain billions
of parameters. They are typically first pretrained for the task of
language modelling using billions of texts before being fine-tuned
for a downstream task using typically a much smaller amount of
data. Language modelling involves predicting the next word in a
sentence given the previous word or sequence of words or, in the
case of mask language modelling, predicting the missing words
given its surrounding context. Training a model to do this from

CNNs are the state of the art in image classification. An
example is EfficientNet (Tan and Le, 2019). This is trained on
labelled figures from CGG’s database of figures. Figures in geo-
science documents are often complex and a composite of multiple
smaller figures of different types. We found it beneficial to first
further locate the individual subfigures within a larger collection
(see Figure 3) using an object detection model like the one used
for document layout analysis before cropping the subfigures and
feeding them into an image classification model.

With the different types of figures classified, the pipeline
can then apply the appropriate algorithm to process the figure. In
the case of core photos CGG has developed a machine learning
model to predict the lithology of the core for each pixel in the
image. This is performed by first segmenting the core from the
background and then using the RGB values of each pixel of the
isolated core to predict the lithology. This algorithm for process-
ing core images can be applied independently of the pipeline to
raw collections of core images. In such a case, we take a reposito-
ry of core images at different depths, segment the core from each
image, read the depth information from either the filename or by
performing OCR on the core image, optionally stitch the core
images together, and then run the lithology prediction. Figure 4
shows a diagram of such a workflow.

Figure 3 Locating the constituent figures inside a
larger figure. Each of the subfigures are then cropped
and classified.

Figure 4 Left: The core is segmented from the
background and stitched together. Right: A core
sample and its predicted lithology; different lithologies
are represented by different colours.

SPECIAL TOPIC: DIGITALIZATION / MACHINE LEARNING

7 6 F I R S T B R E A K I V O L U M E 4 0 I F E B R U A R Y 2 0 2 2

a sentence into a vector. The vector for each individual word
will vary depending on its surrounding words. We say that the
model produces contextual embeddings of the words in the input
sentence.

Often in geology and geoscience, the same word can have
a very different meaning compared to its usage in everyday
English. Good examples are the words ‘play’ and ‘well’. As a
result, we have found it beneficial to further train a model for
the language modelling task on our geological corpus so that the
model can see the various usages of the more specialised scien-
tific terms. Pretraining on the geological corpus has increased the
performance of the model on the downstream task of NER.

We treat NER as a supervised machine learning task which
means that we need a labelled training dataset. As manually
labelling many texts is time-consuming, we have developed an
automated approach using as input our large geological corpus
and our comprehensive taxonomy of terms that has been refined
over the years by our domain experts. After the text has been
extracted from the raw files, such as PDFs, string matching is
performed on the extracted text to find occurrences of the tax-
onomy terms. We also complement this with rule-based pattern
matching to tag anything not in the taxonomy, for example, using
regular expressions to tag any well names which take the form
NAME-NUMBER, such as ‘Well-1’. While string matching
and pattern matching manage to find entities in the text, this is
not exhaustive because there may be spelling mistakes in the
taxonomy or errors in the OCR which prevent entities from being
matched and owing to many variations in naming conventions, it
is difficult to implement all possible patterns for matching. More
importantly, a taxonomy and any rules-based system are static
and cannot adapt automatically to new names and new naming
conventions. All of this necessitates the use of NLP techniques
which consider the meaning of the input text to recognise entities.

With the dataset created we fine-tune our geological cor-
pus-pretrained model to perform NER. Example predictions are
shown in Figure 5. The model manages to identify entities that

scratch requires a huge volume of text, but the good news is that
there is no shortage of written text and no manual labelling is
required because words in any sentence can be masked out.

Remarkably, experiments have shown that a single pretrained
model can be fine-tuned to achieve a state-of-the-art performance
on a wide variety of NLP tasks. One reason why these models
are so effective is that by training a neural network for language
modelling, it can learn to produce meaningful representations
of words. To understand what this means, recall that for neural
networks to be able to work with text, its constituent words need
to be converted into numbers. Critical to the success of any NLP
model is an encoding of words into numbers that are semantically
meaningful. To illustrate this, consider a one-hot encoding of
words in a fixed vocabulary of N words where each word is rep-
resented by an N-dimensional vector of zeroes with the exception
of a single 1 in the ith position for the ith word. In this case, all
the words will have a vector representation which are all equally
spaced apart and therefore cannot capture any semantic meaning.
Methods of generating word embeddings, such as Word2Vec
(Mikolov et al., 2013) and GloVe (Pennington et al., 2014), solve
this by representing words as dense vectors in a lower dimension
(compared with the size of the vocabulary) by using a supervised
learning technique involving neural networks. The vectors pro-
duced by these techniques seem to be able to capture the semantic
relationships within a language; it is possible to experiment with
publicly available word embeddings and check the following
and other similar analogies: let K, M, and W be the vectors for
the word ‘king’, ‘man’ and ‘woman’ respectively then the result
of K – M + W is approximately the vector for the word ‘queen’.

However, with word embeddings, each word is considered
independent and will have the same vector representation,
irrespective of the context. For example, the word ‘bank’ can
mean a riverbank or a bank in which one deposits money but
with Word2Vec and GloVe the word would have the same vector
in both contexts. Transformer-based language models consider
the entire sentence to map each word (tokens to be precise) in

Figure 5 Example predictions on the test set. Labels
with the suffix ‘NEW’ indicate that the entity is neither
in the taxonomy nor found by pattern matching.

SPECIAL TOPIC: DIGITALIZATION / MACHINE LEARNING

F I R S T B R E A K I V O L U M E 4 0 I F E B R U A R Y 2 0 2 2 7 7

spreadsheets. These can be categorised into three types: first, fea-
tures that are derived from just the cell itself, such as the number
of characters in the cell, the percentage of the characters that are
letters, digits, punctuations, or whitespace, whether the cell is
purely numeric, whether the cell is empty as well as the row and
column index of the cell. The second and third types of features
are averages of the above features over cells in the same row and
column respectively. A similar approach has been experimented
in (Koci et al., 2019). In their work, the authors used features
specific to Excel spreadsheets, such as whether the cell contains
a formula. We decided not to use Excel-specific features since we
want to keep our method sufficiently general so that it will also
work for tables on a document page.

In the NLP approach, we treat the problem as a token clas-
sification task. More precisely, the contents in each of the cells
are tokenised and all the tokens in each cell are fed into a deep
neural network where the output is a classification of each token.
The final classification of the cell is decided by a majority vote of
its constituent tokens. The tokens are ordered row-wise, starting
from the top-left most cell then proceeding along the row until the
right-hand boundary of the spreadsheet and then continuing from
the left-most cell on the row below. For the neural network, we
used a language model called LayoutLM (Xu et al., 2020). This
approach allows us to feed the row and column index of each cell
into the model, thus incorporating the 2D structure of the table in
the prediction, which would otherwise be ignored by the contents
being treated as just a sequence of tokens. Example predictions
are shown in Figure 7.

were not originally in the taxonomy and therefore provide a way
for us to enrich our taxonomy.

Figure 6 shows an example of the key terms found in a
document by string matching and by NER. These key terms can
then be used to classify documents. Moreover, since we keep
track of the location of where each term is found, we can achieve
a more granular labelling of the document by classifying each
paragraph individually.

Table cell classification
Tables and spreadsheets contain a wealth of data that are already
in a structured but variable format. Transforming the contents of
a table into useful data not only requires extracting the content of
each individual cell, it also requires identifying the relationship
between these cells. A first step is to identify the role a cell plays
in the table. By knowing the header a data cell belongs to, it is
possible to give meaning to the data and to infer facts. In the case
of spreadsheets, as well as identifying cells in the table, we need
to identify cells around it, such as notes and metadata, which may
provide useful context to the table. It is also crucial to identify
the headers in a table so that the table data can be merged with
downstream processes.

We have explored two different approaches: one involving
feature engineering and using traditional machine learning tech-
niques, and the other using natural language processing.

In the first approach, each cell is associated with a set of
features which are fed into a model to classify the cell into one
of the cell types. Features are computed from the contents of the

Figure 6 Word cloud of the key terms found in one
document by string matching against our taxonomy
and by NER.

Figure 7 Example predictions of the table cell
classification task. Green – Data, Red – Header, Teal –
GroupHead, Orange – Title, Blue – Other.

SPECIAL TOPIC: DIGITALIZATION / MACHINE LEARNING

7 8 F I R S T B R E A K I V O L U M E 4 0 I F E B R U A R Y 2 0 2 2

technology, we can achieve a more granular classification of the
document contents and reduce project times significantly.

Acknowledgements
The authors would like to thank CGG for permission to publish
this work. We would also like to thank our colleagues in the CGG
Data Hub and AI Lab for the useful discussions.

References
Brown et al. [2020]. Language Models are Few-Shot Learners. Advances

in Neural Information Processing Systems, 33, 1877-1901.
Devlin, J., Chang, M., Lee, K. and Toutanova, K. [2019]. BERT:

Pre-training of Deep Bidirectional Transformers for Language
Understanding. NAACL-HLT, 4171-4186.

Koci E., Thiele M., Romero O. and Lehner W. [2019]. Cell Classification
for Layout Recognition in Spreadsheets. Knowledge Discovery,
Knowledge Engineering and Knowledge Management. IC3K 2016.
Communications in Computer and Information Science, 914, 78-100.

Krizhevsky, A., Sutskever, I. and Hinton, G.E. [2012]. ImageNet Clas-
sification with Deep Convolutional Neural Networks. Advances in
Neural Information Processing Systems, 25.

Li, M., Xu, Y., Cui, L., Huang, S., Wei, F., Li, Z. and Zhou, M. [2020].
DocBank: A benchmark dataset for document layout analysis.
Proceedings of the 28th International Conference on Computational
Linguistics, 949-960.

Mikolov, T., Sutskever, I., Chen, K., Corrado, G.S. and Dean, J. [2013].
Distributed Representations of Words and Phrases and their Compo-
sitionality. Advances in Neural Information Processing Systems, 26.

Pennington, J., Socher, R. and Manning, C. [2014]. GloVe: Global Vectors
for Word Representation. Proceedings of the 2014 Conference on
Empirical Methods in Natural Language Processing, 1532-1543.

Ren, S., He, K., Girshick, R. and Sun, J. [2015]. Faster R-CNN: Towards
Real-Time Object Detection with Region Proposal Networks.
Advances in Neural Information Processing Systems, 28.

Tan, M. and Le, Q. [2019]. EfficientNet: Rethinking Model Scaling for
Convolutional Neural Networks. Proceedings of the 36th Interna-
tional Conference on Machine Learning, 6105-6114.

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.
N., Kaiser, L. and Polosukhin, I. [2017]. Attention is All you Need.
Advances in Neural Information Processing Systems, 30.

Xu, Y., Li, M., Cui, L., Huang, S., Wei, F. and Zhou, M. [2020].
LayoutLM: Pre-training of Text and Layout for Document Image
Understanding. Proceedings of the 26th ACM SIGKDD International
Conference on Knowledge Discovery & Data Mining, 1192-1200.

Zhong, X., Tang, J. and Yepes, A.J. [2019]. PubLayNet: largest dataset
ever for document layout analysis. 2019 International Conference on
Document Analysis and Recognition, 1015-1022.

Deployment
As mentioned in the introduction, vast volumes of documents
have been produced over the years in the industry that will need
to go through the machine learning pipeline. The success of any
machine learning solution hinges on the ability to deploy the
models at scale. Another important requirement is being able
to automate the management of computing resources. By this,
we mean the ability to schedule machines to run certain steps in
the pipeline and automatically scale up/down machine learning
models; we do not want engineers constantly monitoring usages
and manually starting applications. In addition, details of those
resources should be concealed from the pipeline end-users; they
should not need to worry about allocating computing resources.

For deployment, we use Kubernetes, an orchestration system
that automates the deployment, scaling, and management of con-
tainerised applications. To orchestrate the workflow and create
the DAG we use Kubeflow which is built on top of Kubernetes.
In Kubeflow, each component can have one or more inputs which
are outputs from previous tasks. A task will not start unless its
prerequisite task has completed successfully. Each task runs in a
container that has been automatically created on a worker node in
the cluster determined by Kubernetes according to the resource
requirements for that task.

The advantage of using Kubernetes, apart from minimising
the management of hardware, is that it is readily available in
all major cloud services, such as Azure, AWS and GCP, as well
as being installable on premises. What this means is that our
machine learning pipeline solution is deployable with minimal
changes on the previously mentioned cloud services as well as
the existing hardware of our clients, provided Kubernetes can
be installed on it. Running all the business logic in docker con-
tainers eliminates the need to install dependencies with every
deployment. In fact, with a CI/CD pipeline we automatically
build the docker images, run tests, and push the image to a
container registry – internally and on the cloud. We build the
images containing our code once and it can then be pulled many
times from different locations.

Conclusion
In this article, we have described how machine learning is used in
our pipeline to classify documents of various file types, such as
PDF, Excel and CSV, and different image files. We have discussed
how computer vision is used to identify the layout of a document
page, and having done that, each constituent component is then
further processed: figures and tables classified, and key terms
identified from the extracted text. Furthermore, with the help of
Kubernetes, documents can be processed at scale. By using this

