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Summary

Learning how to best mimic seismic processing algorithms or workflows with deep learning (DL) has
become a very active field of research. However, seismic processing own particularities may
necessitate adaptations of current DL methods. In this paper, we explain and illustrate how the
different DL components can affect the outcome of a given seismic processing task. Among others,
we show that the Unet neural network architecture (Ronneberger et al., 2015) is naturally suited to
learn how to “separate” the events into kinematics and their amplitudes, and how to use both
information efficiently to perform the common image gathers preconditioning, skeletonization (or
picks probability computation) and muting task. We also show how the convolution kernel shapes, the
number of layers, the training cost function and the batch size can be adapted to specific data and
seismic processing tasks.
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Since its recent successes in natural image classification and analysis (LeCun et al., 2015), deep learning
(DL) has gained significant attention in many industrial fields, including in seismic processing. There,
most of the current investigations consist in learning to mimic seismic processing algorithms or
workflows, i.e. to predict the processed image from the “initial” image using deep neural networks
(DNN); see e.g. Sun et al. (2018), Mandelli et al. (2019), Richardson and Feller (2019), Ovcharenko et
al. (2019), Sen et al. (2019), Yuan et al. (2019). However, seismic processing has its own particularities,
which may necessitate adaptations of current DL methods.

Introduction

Firstly, seismic data or « images » are very different from natural images by their content:

e They are made of “laterally” coherent events that can be decomposed into different physical
contributions such as kinematic, amplitude and wavelet.

e They are signed and oscillatory, with a frequency bandwidth (typically 2.5-150 Hz).

e The frequency bandwidth and the kinematics, as well as the amplitudes in many cases, are very
important to be preserved for further processing tasks.

Secondly, many state-of-the-art algorithms and workflows are available for seismic processing. They
are physical, use regularizations and can be tuned with geophysicist's expertise through user-defined
parameters. The corresponding processes (algorithms together with user’s tuning) are highly non-linear,
and being able to benchmark them represents a challenge for DL. In addition, a comparison with those
processes highlights that operations performed in DNN are not straightforward to interpret physically.
This occasionally leads to consider DNNs as “black boxes”, and the effort is sometimes put more on:
defining good training data (1) and DNN training or optimization techniques (2) rather than on
understanding the optimum DNN components according to the task (3); see e.g. Mandelli et al. (2019),
Richardson and Feller (2019), Ovcharenko et al. (2019), Sen et al. (2019), Yuan et al. (2019). A step
towards point (3) is sometimes made for instance by fine-tuning of DNN components (Sun et al., 2018).

Without neglecting the importance of point (1), we focus here on point (3) and somewhere on point (2),

and study how DNN components and training can affect the outcome of a given seismic processing task.

Experimenting with the Unet convolutional DNN (Ronneberger et al., 2015), we show how:

e Convolutional layers learn to extract and combine meaningful seismic features in an efficient way.

o Data and task particularities can guide the choices for the optimum number of feature maps,
convolution kernel shapes, as well as training parameters like cost function and batch size.

We start with some reminders and illustrate our claims with the example of CIG (common image
gathers) preconditioning, “skeletonization” and muting. This processing task is necessary for the picking
of RMO (residual move out) curves, the “skeleton” representing picks probability, and can be used in
tomography velocity model building (Lambaré et al., 2014) or RMO corrections (Siligi et al., 2003).

Convolutional layers and signal processing (reminder)

Convolutional layers-based 77 1 feature map (f =
neural networks are + Sum of N different convolutions of the input
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themselves being a linear
process, non-linearity in a
convolutional layer (necessary to represent seismic non-linear processes) is brought by application of a
non-linear activation function (e.g. Relu, Elu, Tanh...). The latter is preceded by the application of a
bias term and often of a batch-normalization (BN) procedure, which allows overcoming some training
pathologies related to activation functions “saturation” or null-derivatives. The trained parameters are
the convolution kernels and biases. Each convolutional layer is composed of many feature maps that
learn to “extract” data features (they are related to different convolution kernels). Goodfellow et al.
(2016) give details, and the Fig. 1 together with the following equation, illustrate the key elements:

Figure 1: A convolutional layer’s components.
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Vi € [1,N]: featuremap; = activation {BN <biasi + Z input; x kernelij)},
j=1

where * represents a convolution, which can be (Goodfellow et al., 2016):

e The standard convolution, leading to feature maps of the same size as the input images.
e A contracting (or strided) convolution, leading to smaller feature map size than the input.
e An expansive (or transposed) convolution, leading to bigger feature map size than the input.

Unet customizations and skeletonization

Unet (Ronneberger et al., 2015) is a DNN architecture commonly used in natural

image analysis, combining convolutional layers in a contracting and expansive path

with skip connections. It has proven to be very successful for segmentation and
contour/edge detection. As the latter task shares similarities with skeletonization,
we naturally studied how Unet performs to achieve the following processing:

e Learn CIG skeletonization (or picks probability), i.e. separation of kinematics
from amplitudes/wavelet for each seismic event. This part is highly non-linear,
classical picking algorithms involving global optimizations (Siligi et al., 2003).

o Learn simultaneously to mute where events are largely stretched, or where
events amplitudes dim drastically. Fig. 2 gives an example of training data,
where the green line schematizes the total mute rough delineation.

Those tasks are difficult for DL as they involve the learning of a highly non-linear
workflow (not just one algorithm), and the production of a very sparse and multi-
event output that preserves the kinematics. That represents an additional challenge
compared to the already explored first break picking application by DL (Yuan et
al., 2019), which involves picking a single event for each trace.

After some customizations described thereafter, we found Unet particularly
efficient for the CIG skeletonization and muting task. We started by studying the
compromise between capacity (or parameters
space size, driven by the chosen number of —‘
feature maps) and generalization (or ability to d g >

Figure 2: A data
example, with the mute
roughly schematized
in green. Data size is
180070 samples
(depthxoffset).

predict data “unseen” by the training). With
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different surveys, we found that the Input
compromise is good enough when the Finer I
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architecture of Fig.3 is used. The main fevel >
difference with the original Unet of
Ronneberger et al. (2015) lies into the number

of feature maps in the convolutional layers,

much smaller and decreasing with coarser Comreor
levels; we analyze why in the next section, level
from the task and data point of view. This
“smaller” or “good compromise” Unet has also
the advantage that it eases our next analyses.
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Figure 3: Customized Unet architecture used in this article.

The adjustments of other hyper-parameters (Goodfellow et al., 2016) of our customized Unet are:

o Larger convolution kernels (6x7) perform better than original Unet kernels (3%3), see further below.

e (3x2) strides for contracting and expansive convolutions (e.g. contracting more in the depth
direction), allow to increase the efficiency without quality loss (the CIGs having much more

samples in this the depth direction).

o Eluor Tanh internal activations tend to perform slightly better than Relu within our implementation
(where seismic is rescaled in [-1,1], oscillating around 0O; thus, pre-bias pre-activations also tend to
oscillate and Relu, null for negative values, has a bit more difficulty to capitalize on this behavior).

skeleton as a pick probability for each sample.

Sigmoid function, as an output (or last convolution) activation allows to interpret the predicted

For the training, we use the binary cross-entropy cost function. It is well suited for a probability to

promote sparsity, as illustrated further below. We used the adaptive learning rate optimization
(Adam) method (Goodfellow et al., 2016), batch size of 12 and trained the model for 200 epochs.
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Convolutional layers learn to extract and combine meaningful seismic features in an efficient way

Let us analyze and understand the trained Unet feature maps. Fig.4 shows some of them:

¢ Fine level feature maps learn to highlight the “peaks” or kinematic information (wavelet removal),
i.e. to sharpen the coherent events in various directions; but they do not learn the mute.

e Coarser level feature maps highlight more and more the amplitude (or the “texture”) changes that
occur naturally thanks to the loss of resolution due to contraction. The coarsest “code” layer feature
maps are related to gross amplitude changes only, allowing to more easily learn the mute properties.

e The expansive path together with skip connections allow to combine the kinematic and pertinent
amplitude information extracted in the contracting path, and so to learn skeletonization and muting.
(Visible in “last layer” of Fig. 4, transposed convolutions create a checkerboard pattern that easily
cancels out after last 1x1 convolution as this pattern is at the same position in each feature map).

Unet architecture thus naturally can learn to “separate” events kinematics from their amplitudes/wavelet

properties, and to use both information in an efficient way for a task. This “separation” is physically
meaningful for skeletonization and muting, and also for seismic processing in general (see introduction).
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Figdre 4: For our Unet skeletoniztio and muting task: Left rimage is the input; Then 2 feature maps
per convolutional layer are shown, going deeper and deeper in the DNN (for 1% and 2" layers of

contracting path, code layer and last layer of expansive path, see Fig. 3); Right image is the prediction.
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Figure 5: Skeletonization and muting: Figure 6: Preconditioning and muting. Left: Effect of the
Effect of kernel size and cost function.  batch size. Right: Effect of the feature maps number.

Optimum kernel shapes, number of layers, cost function, batch size and data particularities

Correlations along a seismic event must be taken into account for the continuity and sparsity of the
skeleton. Consequently, kernels, which are more elongated in the offset-direction and enough elongated
to frame the wavelet in the depth-direction, tend to provide better results (see center images of Fig. 5).

Events continuity and sparsity can be promoted during the training through the cost function. For a
probability output (in [0,1]), binary cross-entropy is a good choice to promote sparsity (Goodfellow et
al., 2016) while preserving continuity, see Fig. 5. L, norms (1 < p < 2) are also known to promote
sparsity, but they are less efficient to preserve skeleton continuity (two right images of Fig. 5). However,
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for seismic outputs (whose statistical distributions tend to be symmetrical around 0), the use of L, norms
make sense in the case of CIG preconditioning and muting task (two left CIGs of Fig. 6). Interestingly,
we observed that a sharper mute and better denoising is learnt using p in [1,1.5] rather than p=2 (least-
squares). Also, the DNN that represents the “good compromise” for this task is the same as for the
skeletonization task (Fig. 3); only the output activation has been changed (Tanh in [-1,1]).

A property of seismic data that is also worth exploiting during training is their relatively low diversity
within a survey. Consequently, a gradient (for DNN model update) computed with very few data, i.e.
small batches, can still be representative. It can even be worthwhile: small batches give a noisy version
of the gradient that can help escaping the local minima. This explains our observation that small batches
in general provides better trainings for seismic applications. However, a compromise must sometimes
be found as in the case studied here. In the Fig. 6, the validation curves shown on the left indicates that
the optimum batch size is 12 here, and that smaller batches lead to a less good result (too noisy gradients
may have difficulties to converge towards a good local minimum).

We have seen that coarser layers are more related to seismic gross amplitude/texture variations. As those
variations are usually quite limited in CIGs and seismic data in general, describing them through few
coarser level feature maps should lead to reasonable results. This is illustrated in the two right images
of Fig. 6 (for the preconditioning and muting task), where increasing the number of feature maps with
coarser level (here going from 12 for finer level to 14, 16, 18 for coarser level and 20 for code) brings
only a very slight improvement.

Conclusion and challenges

We explained and illustrated how the different components of a DNN can affect the outcome of a given
seismic processing task, and how they are related to data particularities. Among others, we showed that
the Unet architecture can naturally learn to “separate” the kinematics of events (finer levels feature
maps) from their amplitude variations (coarser levels) and to use both information efficiently for a given
processing task. Our analysis underlined that some key DNN components can be understood depending
on the task and data specificities, and are therefore worth being tested and tuned.

Many DL for seismic processing challenges remain, relating to (1) defining intelligently good training
data, (2) ensuring the best training and (3) understanding the optimum DNN components according to
the physics. In this paper, we focused on some aspects of points (3) and (2), and on some specific tasks.
Systematic study of all those three points would certainly be very beneficial to the seismic community.
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