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Summary 
 
Convolutional based deep neural networks can be used in addition to existing workflows, to improve 
turnaround or as a ‘guide’ for further processing. Whilst a lot of effort has been made to try to 

improve the DNN architecture for processing tasks or to understand their physical interpretation, the 

choice of the training-set is rarely discussed. For a good quality DNN result, the training-set must be 
representative of the variability (or statistical diversity) of the full dataset, and the question of the 

choice of this dataset for seismic data is discussed in this paper. We present two methods for the 

selection of the training set. The first one is based on proxy attributes and their clustering. Our 

clustering approach is not only using the clusters themselves but also the information on the distance 
to the centroid for the cluster definition. The other method is based on the data themselves. It starts 

from a predefined training set and then scans through the full dataset to identify additional training 

points that will be used to augment the initial training set. 
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Data-driven method for training data selection for deep learning 

Introduction 

Deep Learning (DL) for seismic processing has gained interest in the last few years and is an active 

field of research. Convolutional-based deep neural networks (DNNs) can be used to learn to mimic 

physics-based processing algorithms results, to improve turnaround or as a ‘guide’ for further processing 

(see Mandelli et al. 2019, Richarson and Feller 2019). However, three key challenges must be addressed 

to build confidence in adopting DNNs routinely in seismic processing workflows: (1) an intelligent 

selection of the training set with minimal human intervention; (2) the robustness of the DNN results to 

noise and uncertainties; (3) the design of optimum DNN architectures and its components (Sun and 

Demanet 2018, Chambefort and Messud 2020, Messud and Chambefort 2020). In this paper, we focus 

on point (1). Although the choice of the training set can be a main determinant of the quality of DNN 

predictions, a discussion of this aspect seems so far absent in the seismic field.  

We consider the case where we dispose of a full (raw or input) dataset and use a small subset of it as a 

training data. The subset is then processed by a physics-based algorithm to provide the labels (“ground 

truth” - see Figure 1 in the case of deghosting process). Finally, we apply the trained DNN model on 

the full data with the objective that the results have similar quality as the physics-based method.  

Obviously if the training set is too small or insufficiently sampled, it will not capture the variability of 

the full data, leading to poor result. Conversely, if we (brute force) sample the whole dataset and create 

a large training set, the quality of the DNN results should be very good but will come at a prohibitive 

cost on label generation and training process (Hou and Hoeber 2020). 

In the following sections, we start by showing that using regularly spaced sail-lines as training data can 

fail to capture the data variability needed for seismic deghosting. We then introduce two new approaches 

for potential improvement. The first approach uses a prior attribute clustering method based on 

geological horizons. We use the 

distance to centroids in the clustering 

method and do not put any constraints 

on the location of the selected data. The 

second method starts from a predefined 

training set, and then scans through the 

full dataset to identify additional 

training samples to augment the initial 

training set. Note that both methods 

allow irregularly sampled selection, in 

order to better capture the data 

variability. 

Impact of the training set on DNN results 

We use a marine dataset acquired with the source-

over-spread acquisition technology (Vinje et al. 

2017) to demonstrate the impact of the training set 

on the source and receiver deghosting DNN result. 

As the whole 5200 km2 of the dataset (1.4 million 

shots) has been processed with physics-based 

deghosting workflow (Wang et al. 2013), this 

gives us a complete labelled dataset to test various 

training set configurations and to compare the 

DNN results with the labelled data  on the entire 

volume. In this study, we adopted the DUnet DNN 

architecture described in Peng et al. (2021).  

Figure 1 shows a raw shot point (Left), the 

corresponding label (Middle) and the DNN 

prediction (Right). To assess the quality of the 

results, we calculate for each shot record the RMS 

Figure 1 – Shot point (Left) before deghosting, (Middle) 

after physics-based source and receiver deghosting 

(label) and (Right) after DNN prediction. 

Input Label Prediction

Figure 2 – (Left) Training dataset (regular 

lines). (Right) RMS error for the initial 

training set. Blue and red indicate low and 

high error respectively. 
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of the difference between the DNN prediction and the label on a given time window and define this as 

the “RMS error”. In Figure 2 (Right), we show the distribution of RMS error (shot-record x-y) for all 

the shots across the whole survey, using a training set from regularly (every 15km) spaced sail-lines as 

outlined on Figure 2 (Left). Blue and red indicate respectively areas of low and high error. A salt feature 

(red circle) and some gas inclusions (black circle) are particularly badly predicted as these localized 

features are not represented in the given training set. This indicates that geology is one of the main 

factors influencing data variability. Clearly, we could improve the result by choosing a much more 

densely sampled training dataset, but this would not be cost effective and would need repetitive human 

quality control. Instead, we discuss two alternative approaches to improve the training data variability. 

Training data selection from clusters defined using proxy attributes 

We propose a method whereby the shot points to be included in the training set are selected based on 

(geologic) proxies, with no requirement for them to be located on a regular grid. Proxies are priors that 

must be defined according to the processing task, e.g., dispersion panels for surface wave attenuation 

(Masclet et al. (2020)). Assuming geology as a dominant contributor to data variability, we choose four 

geological time horizons as proxy for data variability. A k-mean algorithm is used to geologically cluster 

the four time horizons simultaneously. Conventional analysis to assess the optimum number of classes 

gives around 20 clusters. However, we observed large 

variations in the cluster distribution for small changes 

in the number of clusters, so we use only 8 clusters as 

shown in Figure 3A (each color represents a cluster). 

The distance from each shot point to its own cluster’s 

centroid is then analyzed (Figure 3B). Areas 

exhibiting distances to centroid larger than one 

standard deviation from the median value were 

isolated (Figure 3C), and four new clusters were 

added, bringing the total number of clusters to 12 

(Figure 3D, showing individual data points, colors 

corresponding to the clusters). 

Each cluster now needs to be ‘sufficiently 

represented’ inside the training set. Since within each 

cluster the geology and hence the data are similar, 

there are two methods to sample these clusters: (A) by 

taking a fixed constant percentage of data points 

(Figure 3D) or (B) a fixed constant number of data 

points per cluster. Both selection methods were tested 

to create two training sets of similar size. The prediction RMS errors for both cases are shown in Figure 

4A and 4B for sampling methods (A) and (B). The level of average error is similar in both cases and a 

small improvement is seen (black circles) at some locations when a constant number of points is used 

Figure 4 – RMS error between physics-

based deghosting and DNN prediction 

when the training set contains (A) 1% of 

data in each cluster (B) a constant number 

per cluster. Blue and red indicate low and 

high error respectively.  
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Figure 3 – A- Clusters obtained using the four horizons (8 clusters, each cluster is represented by 

one color). B- Distance to the centroid of the cluster. Blue indicates high distance to the centroid. 

C- Outliers from map B used to form new clusters. D- Positions of the training points (when

selecting a percentage of data points per cluster), the colors corresponding to the 12 updated

clusters.
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per cluster (sampling method B). The black circled areas correspond to the extra clusters introduced by 

the distance to the centroid, indicating that these areas were indeed not well represented by the initial 

clustering and that more importance is given to them when a constant number of points per cluster 

(method B) is used. The area circled in red in Figure 4 is poor with both of these methods. It contains 

some gas inclusions and is not seen as a separate cluster, as these gas inclusions are not included in the 

horizon information.  

The main shortcoming of the method is that it relies on the chosen prior proxies. Here we have chosen 

time horizons as proxies for geology; this has succeeded for the main features of the data, but not for 

gas inclusions; AVO or other noise sources would also be problematic. To overcome this limitation, the 

method could be extended to other proxies or multi-proxies, but it may prove difficult to find proxies 

representative of all features of the data. Also, in this deghosting process, the data are grouped on a sail-

line order, which could pose operational challenges for geological proxy-based data selection. 

Therefore, a second method which is augmenting a predefined initial training set (here sail-lines) is 

proposed. 

Semi-automatic training data augmentation from a predefined initial training set 

This method relies directly on the data similarity rather than on 

proxies and can be easily integrated in a processing sequence. 

We start by defining as initial dataset, hereafter called ‘anchor’, 

some specified subset of the data. The anchor dataset is flexibly 

defined according to the acquisition set-up (e.g., sail-lines, cross-

spread) or even randomly if the processing flow allows it. In our 

case, as deghosting is applied in a sail-line manner, we use 

regularly spaced sail-lines.  

A pairwise similarity measurement is then calculated between all 

input shot points and each “anchor” shot point. This similarity 

measurement could be an Lp distance, a Wasserstein distance or 

any other similarity metric. We found that the L2 distance 

worked well in our study.  

Figure 5 shows the smallest similarity measurement value for 

each shot of the entire volume, with large outliers in red. The 

location of the anchor dataset is represented by the white lines. 

We observe that the method identifies the gas inclusion area 

(polygon at the bottom) as an outlier requiring additional training 

data. This was not the case with the proxy method presented in 

the previous section. From this map, black 

polygons outline the areas where there is a large 

difference compared to the anchor data (in black 

on Figure 5) and a subset of shot points in the 

polygons is added to augment the sail-line based 

anchor training set as shown as red dots in 

Figure 6 (Left).  

Figure 6 (Right) show the RMS error of the 

DNN prediction after training with the 

augmented training sets. This error map can be 

compared to the one from Figure 2 (Right), 

where the error for the initial anchor training set 

is shown. The mean RMS error value is at a 

similar level for both methods and a reduction 

of the outliers is observed when the updated 

training set is used. Around the gas inclusion the 

RMS error has not been completely reduced. 

Figure 6: (Left) Initial training dataset (blue) 

and data added after further data selection (red). 

(Right) RMS error for the updated training 

dataset. Blue and red indicate low and high error 

respectively. 
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Figure 5: Map of the smallest 

similarity measurement (L2) 

value for each shot. Polygons 

around areas of poor similarity 

(large values) are used to select 

extra shots for the training. 
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This could be related to the sampling density of the polygon areas.  

In this comparison, the number of training points is larger for the updated dataset than for the initial one 

by 9%. However, we observed that increasing the number of points in the initial training set by simply 

densifying the sampling along the lines does not improve the outlier areas, meaning that the impact seen 

is indeed coming from added variability in the training set.  

Not surprisingly, we can also observe stripes on these RMS error maps which are linked to better 

prediction around the densely sampled lines of the training set. Here we have chosen sail-lines as anchor, 

but other anchor geometries could have been chosen, for example random shot points. Alternatively, to 

avoid possible bias linked to the choice of the anchor dataset, the method can be iterated.  

Finally, as a similarity is measured with this method, both the signal and noise variability can 

theoretically be assessed. The impact of the noise content on the method will be dependent on the chosen 

similarity measurement. This has not been studied here and would require further investigation. 

Conclusion and way forward 

In this study, we have highlighted the importance of data variability in DNN training. We have tested 

two approaches to select training sets representative of data variability. The first one is based on proxy 

attributes. This is a very simple method in principle, but it needs a prior understanding on the cause of 

data variability. We assumed a single cause, geology, and a single proxy, time horizons; this did not 

give fully satisfactory results in the deghosting case. The second method is based on the data themselves 

and needs no a-priori knowledge. It can be used to augment the initial training set, as it identifies data 

that are less represented by the anchor (initial) data. Further analysis is required to understand how to 

identify the sources of data variability, and deciding the optimum selection scheme and training size. 

As more complex training scheme and larger training data comes at a cost, this remains an important 

open question to be addressed for DNN to become a cost-effective alternative in seismic processing. 
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