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Summary 
 
We present AI-drive workflow for automatic interpretation of large seismic volumes. The workflow is 

applied to an offshore Abu Dhabi area of 15000 km2. First, we show the fault detection results for the 

low-magnitude faults of strike-slip type by the fine-tuning of the DNN. The fault detection is conducted 

in a comprehensive way with structure-enhancing denoise for feature preservation. Second, we illustrate 

that automated horizon interpretation and flattening allows us to observe a variety of geological features, 

which are difficult to target otherwise. Finally, we show how the structure-enhancing denoise improves 

the geological feature identification by an example of channel detection. We further plan to apply the 

suggested workflow for a larger data set covering the whole Abu Dhabi offshore region. 
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Introduction 

 

Subsurface geological interpretation is an essential instrument employed for the exploration of 

hydrocarbon resources and the enhancement of established hydrocarbon reserves. Seismic data is key 

information of the structure of the subsurface, but the interpretation of seismic data is a time-consuming 

and human-dependent process, prone to bias and subjectivity. Modern imaging techniques make it 

possible to produce seismic volumes of high quality, covering vast areas of the subsurface with high 

resolution. Such data takes terabytes of memory storage and may contain a lot of important and detailed 

geological features. AI- and ML-based technologies are apt to be sensible solutions for extracting such 

information and can handle big data. We propose an automated workflow based on deep neural 

networks (DNNs). The workflow takes three stages with three corresponding DNNs: structure-

enhancing seismic denoising and fault detection, seismic horizon interpretation, and channel detection.  

 

We apply our workflow to a survey covering 15,000 km² near Abu Dhabi. The input seismic data is a 

1 Tb post-migration cube in time domain. The region contains different varieties of geological objects, 

such as faults of various regimes, karst, salt bodies, channels, and clinoforms. The case study application 

of our workflow shows the following: First, we show the fault detection results for the low-magnitude 

faults of strike-slip type by the fine-tuning of the DNN. The fault detection is conducted in a 

comprehensive way with structure-enhancing denoise for feature preservation. Second, we illustrate 

that automated horizon interpretation and flattening allows us to observe a variety of geological features, 

which are difficult to target otherwise. Finally, we show how the structure-enhancing denoise improves 

the geological feature identification by an example of channel detection.  

 

Method 

 

The structure-enhancing denoise and fault detection are two processes that we consider in a 

comprehensive way. Faults are one of the most visible geological structures and can be interpreted by 

identifying shifts and discontinuities of seismic events. Thus, the sharpness of the image quality around 

the faults must be maintained during denoising. The simultaneous seismic denoise and fault detection 

can preserve and enhance such structures. The DNN model we use is a customized 3D UNet (Wu et al., 

2019) trained on synthetic data in a supervised manner. The input data is a raw seismic cube, and the 

output is the denoised seismic and the fault probability volumes. We generate the synthetic data 

similarly to Wu et al. (2020). For synthetics, we create realistic 3D geological structures, parameterized 

by folding and physics-constrained faults. Then, we generate seismic reflection coefficients, interpolate 

along the geological structures, and convolve with various types of wavelets. The synthetic models 

contain seismic and the resulting fault volume. To train the DNN for seismic denoising, we combine 

the fault volume and corresponding seismic to provide feature preservation. 

 

To address the low-magnitude faults of transform type, we train the DNN model for fault detection in 

two stages. First, we train a generalized DNN using variations of all possible fault types in a physically 

meaningful range. In the second stage, we fine-tune it by generating the bespoke synthetic data. The 

bespoke synthetics mimic the tectonic regime of the Abu-Dhabi region. The second stage is necessary 

because the fault types in the region are often transform-like, narrow (comparable to the horizontal 

sampling step), and have a small slip along the fault surface. Such fault types are often non-visible in a 

vertical section and can be traced only on the horizontal slices after the seismic denoising. To provide 

the detectability of such fault structures, we generate synthetics with narrow fault planes, strike-slip 

mechanism, and slip values comparable to the vertical sampling of seismic.  

 

For automatic horizon interpretation and seismic flattening, we use the concept from Lomask et al. 

(2006). The method is based on dip-inversion, which allows for recovery of equally sampled horizon 

surfaces along the vertical axis and relies on a highly detailed dip volume derived from the seismic. The 

dips can be inverted using fine, coarse, or a combination of multi-scale grids. 
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Many of the channel structures are more obvious to observe after volume flattening and easier to detect 

after structure-enhancing denoising is applied. The channel detection DNN model is a customized 2D 

UNet (Ronneberger et al., 2015). The input data is the seismic data after denoising and flattening. The 

output is the probability value of channel detection in the range from zero to one. In the data set, we 

consider the channels to rarely be thicker than a few vertical samples, though the morphology is often 

very interpretable and complex. We deliberately use the 2D detection model, as it makes the DNN 

model converge faster while training and makes it more robust. The training data is a combination of 

the horizontal slices of a real seismic volume with the synthetically generated channel systems. A 

similar approach for channel detection is shown by Pham et al. (2019). 

 

Results 

 

Figure 1 shows the comparison of fault detection between pretrained (Figure 1a) and fine-tuned (Figure 

1b) DNN models using a specifically designed training data set. The faults in this region are mostly 

sub-vertical with a strike-slip type of movement and small magnitude (shift along the fault is smaller 

than half of a period of a seismic event). One can see in Figure 1 that the DNN model provides a very 

fine and detailed detection of the fault structures. The 3D approach for the detection is important, as, in 

many cases, the fault cannot be seen by observing only the 2D section. On the other hand, the horizontal 

slice shows obvious structural consistency.  

 

The results of the fault detection are collateral within the study from Noufal et al. (2016), but utilize 

only seismic data, whereas previous research is based on a set of different data types (gravity, magnetic, 

and seismic). The DNN detects different fault types, including large blocks of strike-slip and dip-slip. 

Some areas are more complicated due to salt-related structures and unconformities. The Figures 1b and 

d robustly highlight the fault-related discontinuities. For some areas, the human interpretation and 

validation is required to decide how the detected faults should be connected into a single plane.  

 

 
Figure 1 Fine-tuning of automatic AI-driven fault detection. (a) and (b) show horizontal time slices of 

a seismic volume overlapped with fault detection probability; (c) and (d) show cross-section examples. 

(a) and (c) – fault detection results before fine-tuning; (b) and (d) – after. Probability value colormap 

in a range from zero to one, changing from deep purple to gold colour. 
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Figure 2a illustrates results of the automated horizon interpretation from a subset of the mega survey – 

a scene of inline and crossline sections with automatically detected horizons. The presented seismic is 

after the structure-enhancing denoise. Our dip-based inversion algorithm enables high-resolution 

horizon picking on a fine grid. This technique is crucial to calculating a flattened seismic volume, also 

known as the stratigraphic volume or stratal domain. In Figures 2b, c, and d, we present time slices, 

while Figures 2e, f, and g showcase the corresponding stratal slices. One can see that the stratal slices 

offer a more distinct and detailed view of geological features (channels, faults, and karst). 

 
Figure 2 AI-driven automatic horizon interpretation. (a) seismic volume overlaid with automatically 

detected horizons: yellow – example horizons; red, green, and blue – horizons selected to compare 

stratal- and time-slices; dashed lines – location of time slices. (b), (c) and (d) show seismic amplitude 

extracted from corresponding time slices. (e), (f) and (g) show the seismic amplitudes extracted along 

the automatically interpreted horizons (stratal slices). 

 

 
Figure 3 AI-driven automatic detection of channels: horizontal slice of a raw seismic volume (a) after 

flattening, (b) after structure-enhancing denoise, (c) probability of channel detection overlapped on top 

of seismic slice. Probability value colormap in a range from zero to one changing from deep purple to 

gold colour. 

 

In Figure 3, we show the channel detection result. The channel detection is done slice-by-slice in a 2D 

sense. The denoising results (Figure 3b) show efficient removal of the un-structured noise, preserving 

the edges of the channel structures. This helps to increase the robustness of the DNN for channel 

detection. We deliberately illustrate the denoising effect by application to channel detection, as it is the 

domain where the importance of structure enhancement is highlighted. Out internal tests show that 

similar preconditioning is suitable for detecting other objects like karst as well. A different DNN can 

be trained for karst detection, considering that these objects tend to be small (about 50-100 m in 

diameter). One can use methodology from Sancheti and Hou (2023) to prepare the synthetic data set 

and train the karst detection DNN. The channel structure for this data set is ambiguous, as the seismic  
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is contaminated by noise and residual multiples and complicated by geological unconformities. 

However, one can see that most branches of a channel system are detected.  

 

Discussion 

 

We have developed an automatic AI-based workflow to reveal the geological insights of a mega seismic 

survey of 15,000 km2 with a seismic cube size of 1 Tb. The workflow utilizes three DNN models to 

deliver denoised seismic and faults, horizons, and channels. The consumed resources for the automatic 

workflow are incomparably small relative to the human-driven or semi-automatic flows. We aim to 

conduct a global regional solution with less human effort. The challenging areas (e.g., densely faulted 

areas, salt dome slopes, poor event continuity) will require human validation and post-processing. First, 

we showed the fault detection results after creating the bespoke synthetic data to fine-tune the DNN 

model to target the narrow, strike-slip faults of low magnitude of a slip. We showed that the fine-tuned 

model detects the fault structures, which coincides with the previous geological studies. Second, the 

automated horizon interpretation and flattening allows us to observe features like channels and karst. 

Finally, we presented the channel detection after structure-enhancing denoise and flattening. 

 

The key challenge for this study is the multiple contamination. The water bottom is relatively shallow 

and flat, which makes it difficult to remove multiples. As a result, the stacked volume contains a 

significant phase-tuning effect. The misalignment of the phases along a seismic event makes the horizon 

interpretation results dependent on the chosen frequency band. Despite currently utilizing the DNN-

guided denoise, it is still a struggle to target the residual multiples. The improved demultiple and 

advanced imaging techniques may further improve horizon interpretation and subsequent detection of 

channels, karst, and other geological features. We further plan to apply the suggested workflow for a 

larger data set covering the whole Abu Dhabi offshore region. 
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